K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left[2\times\left(x+2\right)\right]^2=9\)

\(\left[\left(2x+1\right)-2\times\left(x+2\right)\right]\left[\left(2x+1\right)+2\times\left(x+2\right)\right]=9\)

\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)

\(\left(-3\right)\left(4x+5\right)=9\)

\(4x+5=\frac{9}{-3}\)

\(4x+5=-3\)

\(4x=-3-5\)

\(4x=-8\)

\(x=-\frac{8}{4}\)

\(x=-2\)

***

\(3\left(x-1\right)^2-3x\left(x-5\right)=21\)

\(3\times\left[\left(x-1\right)^2-x\left(x-5\right)\right]=21\)

\(x^2-2x+1-x^2+5x=\frac{21}{3}\)

\(3x+1=7\)

\(3x=7-1\)

\(3x=6\)

\(x=\frac{6}{3}\)

\(x=2\)

***

\(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\left(x^2+2\times x\times3+3^2\right)-\left(x^2+8x-4x-32\right)=1\)

\(x^2+6x+9-x^2-8x+4x+32=1\)

\(2x=1-9-32\)

\(2x=-40\)

\(x=-\frac{40}{2}\)

\(x=-20\)

10 tháng 4 2019

Khó quá

10 tháng 4 2019

thế mới hỏi

1 tháng 7 2016

a) Bạn xem lại đề, không có nghiệm chẵn nếu PT là:

(x-2) - (x-3)(x2 + 3x + 9) + 6(x+1)2 = 15

b) \(x\left(x-5\right)\left(x+5\right)-\left(x+2\right)\left(x^2-2x+4\right)=3\\ \)

\(\Leftrightarrow x\left(x^2-25\right)-\left(x^3+2^3\right)=3\\ \)

\(\Leftrightarrow x^3-25x-x^3-8=3\\ \)

\(\Leftrightarrow-25x=11\Leftrightarrow x=-\frac{11}{25}\)

4 tháng 7 2017

Ta có : (a + b)(a2 - ab + b2) - 2a(a - b)2

= (a + b).(a - b)2  - 2a(a - b)2

= (a - b)2(a + b - 2a)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

11 tháng 6 2016

Ở bài 1.a) Bạn ghi thêm điều kiện \(x\ne1\)nhé.

Bài 1.b) x là số nguyên nên khỏi cần ghi thêm điều kiện cho x. ^^

11 tháng 6 2016

a)\(M=\frac{x^3-2x^2+3x+3}{x-1}=\frac{\left(x^3-3x^2+3x-1\right)+\left(x^2-2x+1\right)+\left(2x+3\right)}{x-1}=\frac{\left(x-1\right)^3+\left(x-1\right)^2+2\left(x-1\right)+5}{x-1}=\left(x-1\right)^2+\left(x-1\right)+2+\frac{5}{x-1}\)

Vì x nhận giá trị nguyên nên để M là số nguyên thì \(x-1\inƯ\left(5\right)\)

\(\Rightarrow x-1\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-4;0;2;6\right\}\)

b) \(N=\frac{2x^3-5x^2+8x+8}{2x-1}=\frac{x^2\left(2x-1\right)-\left(4x^2-4x+1\right)+2\left(2x-1\right)+11}{2x-1}=x^2-\left(2x-1\right)+2+\frac{11}{2x-1}\)

Đến đây bạn làm tương tự câu a) nhé ^^

Bài 2 : 

a) \(P=\frac{3x^2+3x+17}{x^2-x+5}=\frac{-2\left(x^2-4x+4\right)+5\left(x^2-x+5\right)}{x^2-x+5}=\frac{-2\left(x-2\right)^2}{x^2-x+5}+5\le5\)

Vậy Max P = 5 <=> x = 2

b) \(Q=\frac{x^2+3x+4}{x^2+3x+5}=\frac{11\left(x^2+3x+4\right)}{11\left(x^2+3x+5\right)}=\frac{\left(4x^2+12x+9\right)+7\left(x^2+3x+5\right)}{11\left(x^2+3x+5\right)}=\frac{\left(2x+3\right)^2}{11\left(x^2+2x+5\right)}+\frac{7}{11}\ge\frac{7}{11}\)Vậy Min Q = \(\frac{7}{11}\Leftrightarrow x=-\frac{3}{2}\)