K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

1) \(\left(5-2x\right)\left(2x+7\right)=4x^2-25\)

\(\Leftrightarrow 4x^2 + 14x - 10x - 35=4x^2-25\)

\(\Leftrightarrow4x^2-4x^2+14x-10x=35-25\)

\(\Leftrightarrow4x=10\)

\(\Leftrightarrow x=\dfrac{10}{4}=\dfrac{5}{2}\)

Vậy \(x=\dfrac{5}{2}\)

2) \(x^2-4x+5\)

\(=-(4x-x^2-5 )\)

\(= -[-(x^2-4x)-5 ]\)

\(=-[ -(x^2-2x.2+4-4)-5 ]\)

\(= -[-(x-2)^2+4-5 ]\)

\(= -[-(x-2)^2-1 ]\)

\(-(x-2)^2 ≤0\)\(\forall x\) \(\Rightarrow\) \(-(x-2)^2-1<0\) \(\forall x\)

\(\Rightarrow\)\(-[-(x-2)^2-1 ]>0\)\(\forall x\)

\(\Rightarrow x^2-4x+5>0\)\(\forall x\)

2

\(x^2-4x+5=x^2-4x+4+1\\ =\left(x-2\right)^2+1>0\)

8 tháng 7 2018

1/

a, \(x^2-6x+10=x^2-6x+9+1=\left(x-3\right)^2+1\ge1>0\)

b,\(4x-x^2-5=-\left(x^2-4x+4\right)-1=-\left(x-2\right)^2-1\le-1< 0\)

2/

a, \(P=x^2-2x+5=x^2-2x+1+4=\left(x-1\right)^2+4\ge4\)

Dấu "=" xảy ra khi x-1=0 <=> x=1

Vậy Pmax = 4 khi x = 1

b, \(M=x^2+y^2-x+6y+10=\left(x^2-x+\dfrac{1}{4}\right)^2+\left(y^2+6y+9\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy Mmax = 3/4 khi x = 1/2, y = -3

19 tháng 10 2020

a, \(x\left(x+1\right)-x\left(x-5\right)=6\Leftrightarrow x^2+x-x^2+5x=6\)

\(\Leftrightarrow x=1\)

b, \(4x^2-4x+1=0\Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

c, \(x^2-\frac{1}{4}=0\Leftrightarrow\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\Leftrightarrow x=\pm\frac{1}{2}\)

d, \(5x^2=20x\Leftrightarrow5x^2-20x=0\Leftrightarrow5x\left(x-4\right)=0\Leftrightarrow x=0;4\)

e, \(4x^2-9-x\left(2x-3\right)=0\Leftrightarrow4x^2-9-2x^2=3x\Leftrightarrow2x^2-9-3x=0\)

\(\Leftrightarrow\left(2x+3\right)\left(x-3\right)=0\Leftrightarrow x=-\frac{3}{2};3\)

f, \(4x^2-25=\left(2x-5\right)\left(2x+7\right)\Leftrightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)

\(\Leftrightarrow-2\left(2x+5\right)=0\Leftrightarrow x=-\frac{5}{2}\)

19 tháng 10 2020

a) x( x + 1 ) - x( x - 5 ) = 6

⇔ x2 + x - x2 + 5x = 6

⇔ 6x = 6

⇔ x = 1

b) 4x2 - 4x + 1 = 0

⇔ ( 2x - 1 )2 = 0

⇔ 2x - 1 = 0

⇔ x = 1/2

c) x2 - 1/4 = 0

⇔ ( x - 1/2 )( x + 1/2 ) = 0

⇔ \(\orbr{\begin{cases}x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{cases}}\Leftrightarrow x=\pm\frac{1}{2}\)

d) 5x2 = 20x

⇔ 5x2 - 20x = 0

⇔ 5x( x - 4 ) = 0

⇔ \(\orbr{\begin{cases}5x=0\\x-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

e) 4x2 - 9 - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 ) - x( 2x - 3 ) = 0

⇔ ( 2x - 3 )( 2x + 3 - x ) = 0

⇔ ( 2x - 3 )( x + 3 ) = 0

⇔ \(\orbr{\begin{cases}2x-3=0\\x+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=-3\end{cases}}\)

f) 4x2 - 25 = ( 2x - 5 )( 2x + 7 )

⇔ ( 2x - 5 )( 2x + 5 ) - ( 2x - 5 )( 2x + 7 ) = 0

⇔ ( 2x - 5 )( 2x + 5 - 2x - 7 ) = 0

⇔ ( 2x - 5 )(-2) = 0

⇔ 2x - 5 = 0

⇔ x = 5/2

16 tháng 8 2018

a) Ta có:

\(x^2+4x+5\)

\(=x^2+2.x.2+4+1\)

\(=\left(x+2\right)^2+1\)

\(\left(x+2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+2\right)^2+1>0\forall x\)

\(\Rightarrow x^2+4x+5>0\forall x\)

b) Ta có:

\(x^2-x+1\)

\(=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

\(\Rightarrow x^2-x+1>0\forall x\)

c) Ta có:

\(12x-4x^2-10\)

\(=-\left(4x^2-12x+10\right)\)

\(=-\left[\left(2x\right)^2-2.2x.3+9+1\right]\)

\(=-\left(2x-3\right)^2-1\)

\(-\left(2x-3\right)^2\le0\forall x\)

\(\Rightarrow-\left(2x-3\right)^2-1< 0\forall x\)

\(\Rightarrow12x-4x^2-10< -1\)

21 tháng 5 2021

\(\frac{4}{2x+3}-\frac{7}{3x-5}=0\left(đkxđ:x\ne-\frac{3}{2};\frac{5}{3}\right)\)

\(< =>\frac{4\left(3x-5\right)}{\left(2x+3\right)\left(3x-5\right)}-\frac{7\left(2x+3\right)}{\left(2x+3\right)\left(3x-5\right)}=0\)

\(< =>12x-20-14x-21=0\)

\(< =>2x+41=0< =>x=-\frac{41}{2}\left(tm\right)\)

21 tháng 5 2021

\(\frac{4}{2x-3}+\frac{4x}{4x^2-9}=\frac{1}{2x+3}\left(đk:x\ne-\frac{3}{2};\frac{3}{2}\right)\)

\(< =>\frac{4\left(2x+3\right)}{\left(2x-3\right)\left(2x+3\right)}+\frac{4x}{\left(2x-3\right)\left(2x+3\right)}-\frac{2x-3}{\left(2x+3\right)\left(2x-3\right)}=0\)

\(< =>8x+12+4x-2x+3=0\)

\(< =>10x=15< =>x=\frac{15}{10}=\frac{3}{2}\left(ktm\right)\)

18 tháng 8 2021

M = x^2 - 4x 

=  x^2 - 4x + 4 - 4

=  (x^2 - 4x + 4 ) - 4

=(x - 2 )^2  - 4

Vì (x - 2 )^2  \(\ge\)0  => (x - 2 )^2 - 4 \(\ge\) - 4    ( với  \(\forall\) x )

Dấu  '' = '' sảy ra  <=>  (x - 2 )^2  = 0

                              <=>  x  -  2   = 0

                               <=>  x    =  2    

Vậy   min M =  - 4     Khi   x  =  2     

18 tháng 8 2021

M = x2 - 4x = (x2 - 4x + 4) - 4 = (x - 2)2 - 4

Vì (x - 2)2 ≥ 0 với mọi x

Mà (x - 2)2 - 4 ≥ - 4 với mọi x

Vậy M đạt giá trị nhỏ nhất <=> (x - 2)2 = 0 <=> x = 2

D = x2 - 2x + 5 = (x2 - 2x + 1) + 4 = (x - 1)2 + 4

Vì (x - 1)2 ≥ 0 với mọi x

Mà  (x - 1)2 + 4 ≥ 4 với mọi x

=> (x - 1)2 + 4 > 0 (luôn dương với mọi x)

=> x2 - 2x + 5 > 0 (luôn dương với mọi x)

1: \(x^2+x+1\)

\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

2: \(2x^2+2x+1\)

\(=2\left(x^2+x+\dfrac{1}{2}\right)\)

\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\forall x\)

3: 

\(x^2+y^2=\left(x-y\right)^2+2xy=7^2+2\cdot60=169\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\cdot\left(xy\right)^2\)

\(=169^2-2\cdot60^2=21361\)

23 tháng 7 2017

a. \(x^2+3x+5\)

\(=x^2+2.x^2.\dfrac{3}{2}+\dfrac{9}{4}+\dfrac{11}{4}\)

\(=\left(x+\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

=> đpcm

23 tháng 7 2017

b. \(4x^2+5x+7\)

\(=\left(2x\right)^2-2.2x.\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{87}{16}\)

= \(\left(2x+\dfrac{5}{4}\right)^2\) + \(\dfrac{87}{16}\) \(\ge\dfrac{87}{16}\)

=> đpcm

19 tháng 8 2018

1. a,\(A=x^2-2x+5=x^2-2.x.1+1^2-1+5\)

\(=\left(x-1\right)^2+4\)

Do \(\left(x-1\right)^2\ge0\) với \(\forall x\) \((\)dấu "=" xảy ra \(\Leftrightarrow x=1)\)

\(\Rightarrow\left(x-1\right)^2+4\ge4\) hay \(A\ge4\) \((\) dấu "=" xảy ra \(\Leftrightarrow x=1)\)

Vậy Min A=4 tại x=1

b,\(B=2x^2-6x=2\left(x^2-3x\right)\)

\(=2.\left(x^2-2.x.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{9}{4}\right)\)

\(=2.\left[\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\)

Do \(2.\left(x-\dfrac{3}{2}\right)^2\ge0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

\(\Rightarrow2.\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\) hay \(B\ge-\dfrac{9}{2}\)

(dấu "=" xảy ra <=> x=\(\dfrac{3}{2}\))

Vậy Min B = \(-\dfrac{9}{2}\) tại x=\(\dfrac{3}{2}\)

Bài 2

a,\(A=6x-x^2+3=-\left(x^2-6x-3\right)\)

\(=-\left(x^2-2.x.3+3^2-9-3\right)\)

\(=-\left[\left(x-3\right)^2-12\right]\)

\(=-\left(x-3\right)^2+12\)

Do \(-\left(x-3\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=3)

\(\Rightarrow-\left(x-3\right)^2+12\le12\) hay \(A\le12\) (dấu "=" xảy ra <=> x=3)

Vậy Max A =12 tại x=3

b,\(B=x-x^2+2=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\)

Do \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\) hay \(B\le\dfrac{9}{4}\) (dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\))

Vậy Max B=\(\dfrac{9}{4}\) tại x=\(\dfrac{1}{2}\)

c,\(C=5x-x^2-5=-\left(x^2-5x+5\right)\)

\(=-\left[x^2-2.x.\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2-\dfrac{25}{4}+5\right]\)

\(=-\left[\left(x-\dfrac{5}{2}\right)^2-\dfrac{5}{4}\right]\)

\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\)

Do \(-\left(x-\dfrac{5}{2}\right)^2\le0\) với mọi x (dấu "=" xảy ra <=> x=\(\dfrac{5}{2}\))

\(\Rightarrow-\left(x-\dfrac{5}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\) hay \(C\le\dfrac{5}{4}\) (dấu ''='' xảy ra <=> x=\(\dfrac{5}{2}\))

Vậy Max C=\(\dfrac{5}{4}\) tại x=\(\dfrac{5}{2}\)

19 tháng 8 2018

Mình làm tiếp phần của Dũng Nguyễn nha.

b) \(4x-x^2-5\)

\(=-\left(x^2-4x+5\right)\)

\(=-\left(x^2-2.x.2+4+1\right)\)

\(=-\left(x-2\right)^2-1\)

\(-\left(x-2\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-2\right)^2-1\le-1\)

\(\Rightarrow-\left(x-2\right)^2-1< 0\) với mọi x

Vậy \(4x-x^2-5< 0\) với mọi x

c) \(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\) với mọi x

Vậy \(x^2-x+1>0\) với mọi x

d) \(-x^2+2x-4\)

\(=-\left(x^2-2x+4\right)\)

\(=-\left(x^2-2x+1+3\right)\)

\(=-\left(x-1\right)^2-3\)

\(-\left(x-1\right)^2\le0\) với mọi x

\(\Rightarrow-\left(x-1\right)^2-3\le-3\)

\(\Rightarrow-\left(x-1\right)^2-3< 0\)

Vậy \(-x^2+2x-4< 0\) với mọi x