Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
goi d=UCLN(n3+2n;n4+3n2+1) (d\(\in\)N*)
\(\Rightarrow\)n3+2n va n4+3n2 +1 chia het cho d \(\Rightarrow\)n4+3n2+1-n(n3+2n) =n2+1 chia het cho d
n3+2n -n(n2+1)=n chia het cho d\(\Rightarrow\)n2 +1-n.n==1 chia het cho d\(\Rightarrow\)d \(\in\)U(1)ma d lon nhat , d\(\in\)N* nen d=1
do đó phân số trên là tối giản
Mik học lớp 6 nhưng lại quên mất câu trả lời rồi!
sorry bạn nha!
1. Gọi d là ƯC(n - 5 ; 3n - 14)
\(\Rightarrow\hept{\begin{cases}n-5⋮d\\3n-14⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(n-5\right)⋮d\\3n-14⋮d\end{cases}\Rightarrow}}\hept{\begin{cases}3n-15⋮d\\3n-14⋮d\end{cases}}\)
=> ( 3n - 15 ) - ( 3n - 14 ) chia hết cho d
=> 3n - 15 - 3n + 14 chia hết cho d
=> ( 3n - 3n ) + ( 14 - 15 ) chia hết cho d
=> 0 + ( -1 ) chia hết cho d
=> -1 chia hết cho d
=> d = 1 hoặc d = -1
=> ƯCLN(n - 5 ; 3n - 14) = 1
=> \(\frac{n-5}{3n-14}\)tối giản ( đpcm )
2. Gọi phân số cần tìm là \(\frac{a}{b}\)
Theo đề bài ta có : \(\frac{a}{b}=\frac{5}{6}\)và \(a+b=88\)
=> \(\frac{a}{5}=\frac{b}{6}\)và \(a+b=88\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{5}=\frac{b}{6}=\frac{a+b}{5+6}=\frac{88}{11}=8\)
\(\frac{a}{5}=8\Rightarrow a=40\)
\(\frac{b}{6}=8\Rightarrow b=48\)
=> \(\frac{a}{b}=\frac{40}{48}\)
Vậy phân số cần tìm là \(\frac{40}{48}\)
3. \(\frac{n+2}{n-1}=\frac{n-1+3}{n-1}=1+\frac{3}{n-1}\)
Để \(\frac{n+2}{n-1}\)có giá trị nguyên => \(\frac{3}{n-1}\)có giá trị nguyên
=> \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)
a) *) \(\frac{n-1}{3-2n}\)
Gọi d là ƯCLN (n-1;3-2n) (d\(\inℕ\))
\(\Rightarrow\hept{\begin{cases}n-1⋮d\\3-2n⋮d\end{cases}\Rightarrow\hept{\begin{cases}2n-2⋮d\\3-2n⋮d\end{cases}\Leftrightarrow}\left(2n-2\right)+\left(3-2n\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\Rightarrow d=1\)
=> ƯCLN (n-1;3-2n)=1
=> \(\frac{n-1}{3-2n}\)tối giản với n là số tự nhiên
*) \(\frac{3n+7}{5n+12}\)
Gọi d là ƯCLN (3n+7;5n+12) \(\left(d\inℕ\right)\)
\(\Rightarrow\hept{\begin{cases}3n+7⋮d\\5n+12⋮d\end{cases}\Rightarrow\hept{\begin{cases}15n+35⋮d\\15n+36⋮d\end{cases}\Leftrightarrow}\left(15n+36\right)-\left(15n+35\right)⋮d}\)
\(\Leftrightarrow1⋮d\left(d\inℕ\right)\)
\(\Rightarrow d=1\)
=> ƯCLN (3n+7;5n+12)=1
=> \(\frac{3n+7}{5n+12}\) tối giản với n là số tự nhiên
b) *) \(\frac{2n+5}{n-1}\left(n\ne1\right)\)
\(=\frac{2\left(n-1\right)+7}{n-1}=2+\frac{7}{n-1}\)
Để \(\frac{2n+5}{n-1}\) nhận giá trị nguyên => \(2+\frac{7}{n-1}\) nhận giá trị nguyên
2 nguyên => \(\frac{7}{n-1}\)nguyên
=> 7 chia hết cho n-1
n nguyên => n-1 nguyên => n-1\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-1 | -7 | -1 | 1 | 7 |
n | -6 | 0 | 2 | 8 |
vậy n={-6;0;2;8} thì \(\frac{2n+5}{n-1}\) nhận giá trị nguyên
gọi d là ƯC(3n-2; 4n-3)
\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)
\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)
\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)
\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)
\(\Rightarrow\) \(1\) \(⋮\) \(d\)
\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)
\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)
\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản
1/ Đặt ƯCLN(3n - 2; 4n - 3) = d
=> \(3n-2⋮d\)và \(4n-3⋮d\)
hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)
hay \(12n-8⋮d\)và \(12n-9⋮d\)
\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)
\(\Leftrightarrow12n-8-12n+9⋮d\)
\(\Leftrightarrow-8+9⋮d\)
Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)
=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau
=> phân số \(\frac{3n-2}{4n-3}\)tối giản.
a) Để \(A=\frac{3x+2}{x+1}\) là số nguyên thì:
\(3x+2⋮x+1\)
Ta có: 3x + 2 = 3(x + 1) - 1
mà 3x + 2 \(⋮\)x+1 => 3(x + 1) - 1\(⋮\)x + 1
có x + 1 \(⋮\)x+1 => -1 \(⋮\)x+1 hay x + 1 \(\in\)Ư(-1) = {1;-1}
Ta có bảng sau:
x+1 | 1 | -1 |
x | 0 | -2 |
Vậy để \(A=\frac{3x+2}{x+1}\) là số nguyên thì x = 0 hoặc x = 2
b) Gọi ƯCLN(3n + 2, 2n + 1) = d (d \(\in\)N)
\(=>\hept{\begin{cases}3n+2⋮d\\2n+1⋮d\end{cases}}\)
\(=>\hept{\begin{cases}2\left(3n+2\right)⋮d\\3\left(2n+1\right)⋮d\end{cases}}\)
\(=>\hept{\begin{cases}6n+4⋮d\\6n+3⋮d\end{cases}}\)
\(=>\left(6n+4\right)-\left(6n+3\right)⋮d\)
\(=>1⋮d\) \(=>d=1\)
Vậy phân số \(B=\frac{3n+2}{2n+1}\) là phân số tối giản
\(\frac{3n+2}{n-1}=\frac{3n-3+5}{n-1}=\frac{3\left(n-1\right)+5}{n-1}=3-\frac{5}{n-1}\)
=>n-1 \(\in\) Ư(5) = {-5;-1;1;5}
n-1 | -5 | -1 | 1 | 5 |
n | -4 | 0 | 2 | 6 |
Vậy n = {-4;0;2;6}
S = 5+52+53+...+52006
5S = 52+53+54+...+52007
5S - S = (52+53+54+...+52007) - (5+52+53+...+52006)
4S = 52007 - 5
S = \(\frac{5^{2007}-5}{4}\)
a) (Có nhiều cách nhưng mình sẽ làm cách dễ hiểu nhất)
A = \(\frac{19}{x+1}.\frac{x}{6}=\frac{19x}{6.\left(x+1\right)}=\frac{19x}{6x+6}\)
Để A là số nguyên
=) \(19x⋮6x+6\)=) \(6.19x⋮6x+6\)=) \(114x⋮6x+6\)(1)
và \(6x+6⋮6x+6\)=) \(19.\left(6x+6\right)⋮6x+6\)=) \(114x+114⋮6x+6\)(2)
-Từ (1) và (2)
=) \(114x+114-114x⋮6x+6\)
=) \(114⋮6x+6\)=) \(6x+6\inƯ\left(114\right)\)
=) \(6x+6=\left\{1;2;3;6;19;38;57;114\right\}\)( Vì \(x\in N\))
=) \(6x=\left\{-5;-4;-3;0;13;32;51;108\right\}\)
=) \(x=\left\{0;18\right\}\)( Vì \(x\in N\)và \(0,108⋮6\))
Vậy \(x=\left\{0;18\right\}\)thì \(\frac{19}{x+1}.\frac{x}{6}\)là số nguyên
b) Để \(\frac{3n+1}{7}\)có giá trị nhỏ nhất
=) \(3n+1\)nhỏ nhất
=) \(3n\)nhỏ nhất =) \(n\)nhỏ nhất
Mà \(n\in N\)=) \(0\le n\)=) \(n=0\)( Vì \(n\)nhỏ nhất )
=) \(\frac{3n+1}{7}=\frac{3.0+1}{7}=\frac{1}{7}\)
=) \(\frac{3n+1}{7}\)có giá trị nhỏ nhất là \(\frac{1}{7}\)khi và chỉ khi \(n=0\)
1;-1;-5;
1)Để \(\frac{3n}{3n+1}\) nguyên =>3n chia hết cho 3n +1
Ta có :3n =3n+1-1
Vì 3n+1 : hết cho 3n+1
=>Để 3n chia hết cho 3n+1
thì1 chia hết cho 3n+1
=>3n+1 thuộc Ư(1)={+-1}
=>n thuộc {0}
vậy n=0