Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}
a. Vì A thuộc Z
\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )
b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)
Vì B thuộc Z nên 5 / x - 3 thuộc Z
\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )
c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)
\(=x-2-\frac{2}{x+1}\)
Vi C thuộc Z nên 2 / x + 1 thuộc Z
\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )
\(\frac{x}{-7}=\frac{5}{-35}\)
\(\frac{x.5}{-35}=\frac{5}{-35}\)
=> x . 5 = 5
x = 5 : 5
x = 1
a) (Có nhiều cách nhưng mình sẽ làm cách dễ hiểu nhất)
A = \(\frac{19}{x+1}.\frac{x}{6}=\frac{19x}{6.\left(x+1\right)}=\frac{19x}{6x+6}\)
Để A là số nguyên
=) \(19x⋮6x+6\)=) \(6.19x⋮6x+6\)=) \(114x⋮6x+6\)(1)
và \(6x+6⋮6x+6\)=) \(19.\left(6x+6\right)⋮6x+6\)=) \(114x+114⋮6x+6\)(2)
-Từ (1) và (2)
=) \(114x+114-114x⋮6x+6\)
=) \(114⋮6x+6\)=) \(6x+6\inƯ\left(114\right)\)
=) \(6x+6=\left\{1;2;3;6;19;38;57;114\right\}\)( Vì \(x\in N\))
=) \(6x=\left\{-5;-4;-3;0;13;32;51;108\right\}\)
=) \(x=\left\{0;18\right\}\)( Vì \(x\in N\)và \(0,108⋮6\))
Vậy \(x=\left\{0;18\right\}\)thì \(\frac{19}{x+1}.\frac{x}{6}\)là số nguyên
b) Để \(\frac{3n+1}{7}\)có giá trị nhỏ nhất
=) \(3n+1\)nhỏ nhất
=) \(3n\)nhỏ nhất =) \(n\)nhỏ nhất
Mà \(n\in N\)=) \(0\le n\)=) \(n=0\)( Vì \(n\)nhỏ nhất )
=) \(\frac{3n+1}{7}=\frac{3.0+1}{7}=\frac{1}{7}\)
=) \(\frac{3n+1}{7}\)có giá trị nhỏ nhất là \(\frac{1}{7}\)khi và chỉ khi \(n=0\)