K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2019

\(1,\)\(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=\left(3^{n+2}+3^n\right)-\left(2^{n+2}+2^n\right)\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)\)

Vậy chữ số tận cùng của A là chữ số 0

9 tháng 5 2019

\(2,\)\(\frac{x+3}{x-2}\)

\(=\frac{x-2+5}{x-2}\)

\(=\frac{x-2}{x-2}+\frac{5}{x-2}\)

\(=1+\frac{5}{x-2}\)

\(\Rightarrow\)Để \(1+\frac{5}{x-2}\in Z\Rightarrow\frac{5}{x-2}\in Z\)

\(\Rightarrow x-2\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

Chia ra 4 trường hợp rồi tự tìm ra x nha

8 tháng 10 2017

1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)

\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)

\(\Rightarrow27>x>18\)

Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)

Vậy....

24 tháng 6 2020

Ta có: \(N=\frac{x+2}{x-1}=\frac{x-1+3}{x-1}=1+\frac{3}{x-1}\)

Để M,N đồng thời có giá trị nguyên thì \(2⋮\left(x+3\right)\)và \(3⋮\left(x-1\right)\)

hay \(x+3\inƯ\left(2\right)\)và \(x-1\inƯ\left(3\right)\)

Ta có bảng:

x+31-12-2
x-2-4-1-5
x-11-13-3
x204

-2

Vay \(x\in\left\{-5;-4;-2;-1;0;2;4\right\}\)

23 tháng 4 2017

a/ mk chua tim ra , thong cam 

b/ mk tìm n = -2 ., -1 hoặc 0

5 tháng 8 2017

Để \(\frac{3}{x^2+x+1}\) nhận giá trị nguyên \(\Leftrightarrow x^2+x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Mà \(x^2+x+1=\left(x^2+x+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Nên \(x^2+x+1=\left\{1;3\right\}\)

TH1: \(x^2+x+1=1\Leftrightarrow x\left(x+1\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}\left(TM\right)}\)

TH2\(x^2+x+1=3\Leftrightarrow x^2+x-2=0\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\Rightarrow\orbr{\begin{cases}x=1\\x=-2\end{cases}}\left(TM\right)\)

Vậy \(x\in\left\{-2;-1;1;0\right\}\)

6 tháng 1 2020

1) Tìm x 

a) |3x - 1| + |1 - 3x| = 6

<=> |3x - 1| + |3x - 1| = 6

<=> 2|3x - 1| = 6

=> |3x - 1| = 3

=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)

b) |2x - 1| + |1 - 2x| = 8

<=> |2x - 1| + |2x - 1| = 8

<=> 2|2x - 1| = 8 

=> |2x - 1| = 4

=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)