K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

1) Tìm x 

a) |3x - 1| + |1 - 3x| = 6

<=> |3x - 1| + |3x - 1| = 6

<=> 2|3x - 1| = 6

=> |3x - 1| = 3

=> \(\orbr{\begin{cases}3x-1=3\\3x-1=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{4}{3}\\x=-\frac{2}{3}\end{cases}}}\)

b) |2x - 1| + |1 - 2x| = 8

<=> |2x - 1| + |2x - 1| = 8

<=> 2|2x - 1| = 8 

=> |2x - 1| = 4

=> \(\orbr{\begin{cases}2x-1=4\\2x-1=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-\frac{3}{2}\end{cases}}}\)

1 tháng 2 2019

\(M=\frac{2016x-2016}{3x+2}=\frac{3x+2013x+2-2018}{3x+2}=\frac{3x+2+2013x-2018}{3x+2}=1+\frac{2013x-2018}{3x+2}\)

de min A thi 3x + 2 nho nhat 

<=> 3x + 2 = -1

<=> 3x = -3

<=> x = -1

vay_

1 tháng 2 2019

\(M=\frac{2016x-2016}{3x+2}=672-\frac{3360}{3x+2}\)

Để M nhỏ nhất thì \(\frac{3360}{3x+2}\)lớn nhất

Hay 3x + 2 là số dương nhỏ nhất vì x nguyên

\(\Rightarrow3x+2\ge1\)

\(\Rightarrow x\ge-\frac{1}{3}=-0,333\)

Vì x nguyên nên x = 0 là giá trị cần tìm

10 tháng 1 2020

\(M=\frac{2016x-2016}{3x+2}\)

\(=672-\frac{1344}{3x+2}\)

để M nhỏ nhất => \(\frac{1344}{3x+2}\)phải lớn nhất với x thuộc số nguyên

\(\Leftrightarrow3x+2\)nhỏ nhất >0

\(\Leftrightarrow x=1\)

\(M=\frac{2016x+1344}{3x+2}-\frac{3360}{3x+2}=672-\frac{3360}{3x+2}\)

M nhỏ nhất => \(\frac{3360}{3x+2}\) lớn nhất => \(3x+2\) nguyên dương và nhỏ nhất => \(3x+2=1\) => \(x=\frac{-1}{3}\)

Vậy GTNN của \(M=-2688\) khi \(x=\frac{-1}{3}\)

3 tháng 9 2021

X = \(\frac{-1}{3}\) nha bạn

trả lời giúp mk với 

7 tháng 8 2016

chịu , hổng bt lun ak

8 tháng 11 2017

a) Ta có: \(M=\frac{2x+5}{x+1}=\frac{2\left(x+1\right)+3}{x+1}=\frac{2x+2+3}{x+1}\)

Vì \(2x+2⋮\left(x+1\right)\Rightarrow3⋮\left(x+1\right)\)

Nên \(x+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)

\(\Rightarrow x=\left\{0;-2;2;-4\right\}\)

b) Tương tự

29 tháng 3 2017

a) m = 2x +5 / x +1 

= 2(x+1) + 3 / x+1

= 2 + 3/ x+ 1

Để M có giá trị nguyên thì 3 phải chia hết cho x + 1

=> x+1 = 3

=> x = 2

Vậy x = 2 thì M có giá trị nguyên

31 tháng 3 2017

2.

a/\(A=5-I2x-1I\)

Ta thấy: \(I2x-1I\ge0,\forall x\)

nên\(5-I2x-1I\le5\)

\(A=5\)

\(\Leftrightarrow5-I2x-1I=5\)

\(\Leftrightarrow I2x-1I=0\)

\(\Leftrightarrow2x=1\)

\(\Leftrightarrow x=\frac{1}{2}\)

Vậy GTLN của \(A=5\Leftrightarrow x=\frac{1}{2}\)

b/\(B=\frac{1}{Ix-2I+3}\)

Ta thấy : \(Ix-2I\ge0,\forall x\)

nên \(Ix-2I+3\ge3,\forall x\)

\(\Rightarrow B=\frac{1}{Ix-2I+3}\le\frac{1}{3}\)

\(B=\frac{1}{3}\)

\(\Leftrightarrow B=\frac{1}{Ix-2I+3}=\frac{1}{3}\)

\(\Leftrightarrow Ix-2I+3=3\)

\(\Leftrightarrow Ix-2I=0\)

\(\Leftrightarrow x=2\)

Vậy GTLN của\(A=\frac{1}{3}\Leftrightarrow x=2\)

1 tháng 2 2017

Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn

Vì \(\left(2x-3\right)^2\ge0\)

\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5

Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)

Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)