Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
\(2^{49}=\left(2^7\right)^7=128^7;5^{21}=\left(5^3\right)^7=125^7\\ Vì:128^7>125^7\Rightarrow2^{49}>5^{21}\)
Bài 2:
\(a,S=1+3+3^2+3^3+...+3^{99}\\ =\left(1+3+3^2+3^3\right)+3^4.\left(1+3+3^2+3^3\right)+...+3^{96}.\left(1+3+3^2+3^3\right)\\ =40+3^4.40+...+3^{96}.40\\ =40.\left(1+3^4+...+3^{96}\right)⋮40\\ b,S=1+4+4^2+4^3+...+4^{62}\\ =\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+...+4^{60}.\left(1+4+4^2\right)\\ =21+4^3.21+...+4^{60}.21\\ =21.\left(1+4^3+...+4^{60}\right)⋮21\)
Bài 1 :
\(2^{49}=\left(2^7\right)^7=128^7\)
\(5^{21}=\left(5^3\right)^7=125^7\)
mà \(125^7< 128^7\)
\(\Rightarrow2^{49}>5^{21}\)
Bài 2 :
a) \(S=1+3+3^2+3^3+...3^{99}\)
\(\Rightarrow S=\left(1+3+3^2+3^3\right)+3^4\left(1+3+3^2+3^3\right)...+3^{96}\left(1+3+3^2+3^3\right)\)
\(\Rightarrow S=40+40.3^4+...+40.3^{96}\)
\(\Rightarrow S=40\left(1+3^4+...+3^{96}\right)⋮40\)
\(\Rightarrow dpcm\)
b) \(S=1+4+4^2+4^3+...4^{62}\)
\(\Rightarrow S=\left(1+4+4^2\right)+4^3\left(1+4+4^2\right)+...4^{60}\left(1+4+4^2\right)\)
\(\Rightarrow S=21+4^3.21+...4^{60}.21\)
\(\Rightarrow S=21\left(1+4^3+...4^{60}\right)⋮21\)
\(\Rightarrow dpcm\)
\(S=2+2^2+2^3+2^4+....+2^{99}+2^{100}\)
\(S=2.\left(2+2^2\right)+.....+2^{99}.\left(2+2^2\right)\)
\(S=2.6+.....+2^{99}.6\)
\(S=6.\left(2+2^{99}\right)⋮6\)
\(\Rightarrow S⋮6\)
\(S=2^0+2^2+...+2^{2014}.\)
\(S=\left(2^0+2^2+2^4+2^6\right)+.....+\left(2^{2008}+2^{2010}+2^{2012}+2^{2014}\right)\)
\(S=17+.....+2^{2008}.17\)
\(S=17.\left(2^0+...+2^{2008}\right)\)
\(\Leftrightarrow S⋮17\left(đpcm\right)\)
\(S=2^0+2^2+...+2^{2014}.\)
\(S=\left(2^0+2^2+2^4\right)+....+\left(2^{2010}+2^{2012}+2^{2014}\right)\)
\(S=21+....+2^{2010}.21\)
\(S=21.\left(2^0+...+2^{2010}\right)\)
\(S=7.3.\left(2^0+....+2^{2010}\right)\)
\(\Leftrightarrow S⋮7\left(đpcm\right)\)
S = 20 + 22 + 24 + 26 + 28 + ... + 22014
S = (20 + 22 + 24) + (26 + 28 + 210) + ... + (22010 + 22012 + 22014)
S = (20 + 22 + 24) + 26(20 + 22 + 24) + ... + 22010(20 + 22 + 24)
S = (20 + 22 + 24)(26 + ... + 22010)
S = 21 . (26 + ... + 22010)
Vì 21 \(⋮\)7 nên 21 . (26 + ... + 22010) \(⋮\)7 => S \(⋮7\)
cho tổng :S=3^0+3^2+3^4+3^6+...........................+3^2014.tính S và chứng minh S chia hết cho 7
\(S=3^0+3^2+3^4+3^6+...+3^{2014}\)
\(=1+3^2+3^4+3^6+...+3^{2014}\)
\(=\left(1+3^2\right)+3^4\left(1+3^2\right)+...+3^{2012}\left(1+3^2\right)\)
\(=7+3^4.7+...+3^{2012}.7=7\left(1+3^4+...+3^{2012}\right)⋮7\)
Vậy ta có đpcm
S=1+3+3^2+...+3^34=>S=(1+3+3^2+...+3^4)+...+(3^30+3^31+3^32+...+3^34)(1 cặp 4 số)=121+...+3^30(1+3+3^2+...+3^4)=121+...+3^30. 121.
mà 121 chia hết cho11=>S chia hết cho 11
S=1+3+3^2+...+3^34=1+(3+3^2)+...+(3^33+3^34)(1 cặp 2 số)=1+12+...+3^32(3+3^2)=1+12+...+3^32.12=1+12(1+...+3^32)
mà 12 chia hết cho 4=>S/4 dư 1
S=1+3+3^2+...+3^34=1+3+9+(27+81+3^5+3^6)+...(3^31+...+3^34)(nhóm 1 cặp 4 số)=13+...0+..+...0(các số trong nhóm có chữ số tận cùng =0)=...3=>S=...3
b) S = 30 + 32 + 34 + .. + 32014
S = (30 + 32 + 34) + (36 + 38 + 310) + ... + (32010 + 32012 + 32014)
S = 30(1 + 32 + 34) + 36.(1 + 32 + 34) + ... + 32010.(1 + 32 + 34)
S = 30.91 + 36.91 + ... + 32010.91
S = 91.(30 + 36 + .. + 32010) = 7.13.(30 + 36 + .. + 32010)
Vì tích trên có thừa số 7 => S chia hết cho 7