Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có công thức : với a ; b là 2 số thực thì ta luôn có :
a2 - b2 = a2 + ab - ab - b2 = a(a + b) - b(a + b) = (a - b)(a + b)
Áp dụng vào bài toán ta được :
A = 1002 - 992 + 982 - 972 + ...... + 22 - 12
= (100 - 99)(100 + 99) + (98 - 97)(98 + 97) + ......... + (2 - 1)(2 + 1)
= 1 + 2 + 3 + ......... + 99 + 100
\(=\frac{100.\left(100+1\right)}{2}=5050\)
A=(1002-992)+(982-972)+...+(22-12)
A=(100-99)(100+99)+(98-97)(98+97)+...+(2-1)(2+1)
A=100+99+98+97+...+2+1
A=(100+1)100/2=5050
P/s : Happy new year!
\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(ax+by+cz\right)^2\)
\(\Leftrightarrow x^2a^2+x^2b^2+x^2c^2+y^2a^2+y^2b^2+y^2c^2+z^2a^2+z^2b^2+z^2c^2\)\(-\left(a^2x^2+b^2y^2+c^2z^2+2axby+2axcz+2bycz\right)=0\)
\(\Leftrightarrow x^2a^2+x^2b^2+x^2c^2+y^2a^2+y^2b^2+y^2c^2+z^2a^2+z^2b^2+z^2c^2\)\(-a^2x^2-b^2y^2-c^2z^2-2axby-2axcz-2bycz=0\)
\(\Leftrightarrow x^2b^2+x^2c^2+y^2a^2+y^2c^2+z^2a^2+z^2b^2-2axby-2axcz-2bycz=0\)
\(\Leftrightarrow\left(x^2b^2-2axby+y^2a^2\right)+\left(x^2c^2-2axcz+z^2a^2\right)+\left(y^2c^2-2bycz+z^2b^2\right)=0\)
\(\Leftrightarrow\left(xb-ya\right)^2+\left(xc-za\right)^2+\left(yc-zb\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\left(xb-ya\right)^2=0\\\left(xc-za\right)^2=0\\\left(yc-zb\right)^2=0\end{cases}\Rightarrow\hept{\begin{cases}xb-ya=0\\xc-za=0\\yc-zb=0\end{cases}\Rightarrow}\hept{\begin{cases}xb=ya\\xc=za\\yc=zb\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{a}=\frac{y}{b}\\\frac{x}{a}=\frac{z}{c}\\\frac{y}{b}=\frac{z}{c}\end{cases}}}\Rightarrow\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\)
có phải đề như này : CMR nếu \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\) thì \(\left(a^2+b^2+c^2\right)\left(x^2+y^2+z^2\right)=\left(ax+by+cz\right)^2\)
đặt \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=k\Rightarrow\hept{\begin{cases}x=ak\\y=bk\\z=ck\end{cases}}\)
Ta có :
\(\left(x^2+y^2+z^2\right)\left(a^2+b^2+c^2\right)=\left(a^2k^2+b^2k^2+c^2k^2\right)\left(a^2+b^2+c^2\right)=k^2\left(a^2+b^2+c^2\right)^2\)
\(\left(ax+by+cz\right)^2=\left(a^2k+b^2k+c^2k\right)^2=k^2\left(a^2+b^2+c^2\right)^2\)
Từ đó suy ra đpcm
\(A=100^2-99^2+98^2-97^2+...+2^2-1^2\)
\(A=\left(100^2-99^2\right)+\left(98^2-97^2\right)+...+\left(2^2-1^2\right)\)
Có 50 cặp số.
\(A=10+10+10+...+10\)
\(A=10.50\)
\(A=500\)