Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)
+Nếu a chia hết cho 5 , bài toán giải xong
+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5
+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5
+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5
+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có a+1=5e+4+1=(5e+5) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết cho 5
b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N
do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5
=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5
a; Tổng của ba số tự nhiên liên tiếp có dạng:
n; n + 1; n + 2
Tổng của ba số tự nhiên liên tiếp có là:
n + n + 1 + n +2 = 3n + 3 = 3.(n+ 1) ⋮ 3(đpcm)
2) a) 102001 có tổng các chữ số bằng 1 => 102001 có tổng các chữ số bằng 3 => số đó chia hết cho 3; không chia hết cho 9
b) 102001 - 1 = 100....00 - 1 = 999..9 (có 2001 chữ số 9) => tổng các chữ số của nó chia hết cho 9
=> 102001 -1 chia hết cho 9 và chia hết cho 3
2) Gọi 5 số tự nhiên liên tiếp là n; n + 1; n + 2; n + 3; n + 4 ( n thuộc N)
n là số tự nhiên nên n có thể có dạng 5k; 5k + 1; 5k + 2; 5k + 3; 5k + 4
+) Nếu n = 5k : tức là n chia hết cho 5
+) Nếu n = 5k + 1 => n + 4 = 5k + 5 = 5.(k+1) chia hết cho 5 => n+ 4 chia hết cho 5
+) Nếu n = 5k + 2 => n + 3 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 3 chia hết cho 5
+) Nếu n = 5k + 3 => n + 2 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 2 chia hết cho 5
+) n = 5k + 4 => n +1 = 5k + 5 = 5(k+1) chia hết cho 5 => n + 1 chia hết cho 5
Vậy Trong năm số tự nhiên liên tiếp luôn có 1 số tự nhiên chia hết cho 5
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
5 số tự nhiên đó có dạng: a + a+1+a+2+a+3+a+4 = a x 5 + 10 = 5 x (a+2)
Vậy tổng số số tự nhiên liên tiếp luôn luôn chia hết cho 5
Gọi 5 số tự nhiên liên tiếp là n, n+1, n+2, n+3, n+4 \(\left(n\inℕ\right)\)
Nếu n chia hết cho 5 => đpcm
Nếu n chia 5 dư 1 => n+4 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 2 => n+3 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 3 => n+2 chia hết cho 5 (đpcm)
Nếu n chia 5 dư 4 => n+1 chia hết cho 5 (đpcm)