K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2015

a) = x^2 - y^2 - x - y

   = ( x-  y)(x + y) - ( x+ y)

  = ( x+  y)( x- y - 1 )

 

9 tháng 8 2015

a)x2-x-y2-y

=x2-y2-x-y

=(x-y)(x+y)-(x+y)

=(x+y)(x-y-1)

 

 

17 tháng 10 2015

A) 1/2 x(x^2-4)+4(x+2)

=1/2x(x-2)(x+2)+4(x+2)

=(x+2)(1/2x^2-x+4)

b) 21(x-y)^2-7(x-y)^3

= (x-y)^2(21-7x+7y)

=(x-y)^2.7(3-x+y)

c) 1/8x^3-3/4x^2+3/2x-1

=(1/2x)^3-3.(1/2x)^2.1+3.1/2x.1^2-1

=(1/2x-1)^3

17 tháng 10 2018

1)\(x^3-2x^2y+x-xz^2\)

\(=x\left(x^2-2xy+1-z^2\right)\)

\(x^2y+xy^2-x-y\)

\(=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

2) \(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)=0\)

\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)=0\)

\(\left(x-2\right)\left[x^2+2x+7+2.\left(x+2\right)-5\right]=0\)

\(\left(x-2\right)\left(x^2+6\right)=0\)

Ta có: \(x^2+6>0\forall x\)

Để \(\left(x-2\right)\left(x^2+6\right)=0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Vậy \(x=2\)

\(\left(x-2\right)^2=\left(3x-2\right)\left(x-2\right)\)

\(\left(x-2\right)^2-\left(3x-2\right)\left(x-2\right)=0\)

\(\left(x-2\right)\left(x-2-3x+2\right)=0\)

\(-2x\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}-2x=0\\x-2=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

Vậy \(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

P/S: Câu 1 nghi sai đề

23 tháng 10 2016

kết quả thôi nha

23 tháng 10 2016

umk nhanh nha bạn

24 tháng 7 2016

1)   \(x^2-x-y^2-y=\left(x^2-y^2\right)-\left(x+y\right)=\left(x-y\right)\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(x-y-1\right)\)

\(x^2-2xy+y^2-z^2=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\)

2)\(5x-5y+ax-ay=5\left(x-y\right)+a\left(x-y\right)=\left(x-y\right)\left(a+5\right)\)

\(a^3-a^2x-ay+xy=a^2\left(a-x\right)-y\left(a-x\right)=\left(a-x\right)\left(a^2-y\right)\)

4 tháng 8 2017

Mình sửa: Bài 1
2)x2+3x-15

20 tháng 5 2018

a) x2 + 6x + 9 = x2 + 2 . x . 3 + 32 = (x + 3)2

b) 10x – 25 – x2 = -(-10x + 25 +x2) = -(25 – 10x + x2)

                         = -(52 – 2 . 5 . x – x2) = -(5 – x)2

c) 8x3 - 1/8 = (2x)3 – (1/2)3 = (2x - 1/2)[(2x)2 + 2x . 12 + (1/2)2]

                    = (2x - 1/2)(4x2 + x + 1/4) 

d)1/25x2 – 64y2 = (1/5x)2(1/5x)2- (8y)2 = (1/5x + 8y)(1/5x - 8y)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

1 tháng 8 2017

A=  x+ 64

A= (x2)+ 2.x2.8 +82  - (2.x.8)

A=(x2+8)2 -16x2

A =(x2+8+4x).(x2+8-4x)

-

G=(x2+y2+z2)2        (có sẵn hdt rồi mak_)

4 tháng 8 2017
Câu E = (a+b)^3 + 3(a+b)^c + 3(a+b)c^2 + c^3 -a^3 -b^3 -c^3 =a^3 + 3a^2b + 3ab^2 + b^3 + 3c(a+b)(a+b+c)-a^3-b^3 = 3a^2b + 3ab^2 + 3c(a+b)(a+b+c) = 3ab(a+b)+3c(a+b)(a+b+c) = 3(a+b)[ab+c(a+b+c)] = 3(a+b)(ab+ac+bc+c^2) = 3(a+b)[a(b+c)+c(b+c)] = 3(a+b)(b+c)(a+c) Thông cảm nk, mk làm a,b,c mất rồi