K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

+ Từ bài toán tổng quát

(n-1).n.(n+1)=n3 - n => n3 = (n-1).n.(n+1) + n

\(\Rightarrow\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+...+\frac{1}{2006^3}=\)

\(=\frac{1}{1.2.3+2}+\frac{1}{2.3.4+3}+\frac{1}{3.4.5+4}+\frac{1}{2005.2006.2007-2006}=A\)

\(\Rightarrow A< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2005.2006.2007}=B\)

\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2005.2006.2007}\)

\(2B=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2007-2005}{2005.2006.2007}\)

\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)

\(2B=\frac{1}{2}-\frac{1}{2006.2007}\Rightarrow B=\frac{1}{4}-\frac{1}{2.2006.2007}< \frac{1}{4}\)

\(\Rightarrow A< \frac{1}{4}\)

12 tháng 12 2019

Nếu \(n>0\Rightarrow\left(n-1\right)n\left(n+1\right)=n^3-n< n^3.\)

\(\Rightarrow VT< \frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2005.2006.2007}\)

\(\Rightarrow2.VT< \frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{2005.2006.2007}\)

\(\Rightarrow2.VT< \frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{2007-2005}{2005.2006.2007}\)

\(\Rightarrow2VT< \frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{2005.2006}-\frac{1}{2006.2007}\)

\(\Rightarrow2.VT< \frac{1}{2}-\frac{1}{2006.2007}\Rightarrow VT< \frac{1}{4}-\frac{1}{2.2006.2007}< \frac{1}{4}\)

4 tháng 7 2019

Câu hỏi của Biêtdongsaigon - Toán lớp 6 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

17 tháng 10 2018

\(a,M=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{n^2}\)

\(M< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{\left(n-1\right)n}\)

\(M< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(M< 1-\dfrac{1}{n}< 1\)

\(\Rightarrow M< 1\left(đpcm\right)\)

\(b,N=\dfrac{1}{4^2}+\dfrac{1}{6^6}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}\)

\(N< \dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\)

\(N< \dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)

\(N< \dfrac{1}{3}-\dfrac{1}{2n+1}< \dfrac{1}{3}\)

\(c,\)\(a< b\Rightarrow2a< a+b\)

\(c< d\Rightarrow2c< c+d\)

\(m< n\Rightarrow2m< m+n\)

\(\Rightarrow2a+2c+2m=2.\left(a+c+m\right)< a+b+c+d+m+n\)

\(\Rightarrow\dfrac{a+c+m}{a+b+c+d+m}< \dfrac{1}{2}\)

4 tháng 10 2019

vì -1 hơn 1 hai số cho nên;

a) a/b và c/d ^2 =ab/cd hơn kém nhau 2

b) dựa theo tính chất kết hợp (a+b/c+d ) ^3 = a ^3 ...

8 tháng 11 2017
à mà chúc ae có 1 buổi tối vui vẻ
8 tháng 11 2017

he he he he he

27 tháng 8 2017

\(\dfrac{-5}{3}-\left(\dfrac{5}{12}-\dfrac{3}{4}\right)< x< \dfrac{11}{6}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{-5}{3}-\left(\dfrac{5}{12}-\dfrac{3}{4}\right)\\x< \dfrac{11}{6}-\left(\dfrac{1}{3}+\dfrac{1}{4}\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{-5}{3}-\dfrac{5}{12}+\dfrac{3}{4}\\x< \dfrac{11}{6}-\dfrac{1}{3}-\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>\dfrac{-20}{12}-\dfrac{5}{12}+\dfrac{9}{12}\\x< \dfrac{22}{12}-\dfrac{4}{12}-\dfrac{3}{12}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x>-\dfrac{4}{3}\\x< \dfrac{5}{4}\end{matrix}\right.\Rightarrow x\in\left\{-\dfrac{4}{3};\dfrac{5}{4}\right\}}\)

28 tháng 8 2017

bạn viết gì mk chả hiểu gì cả