Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
ĐK: \(x\geq -2\)
Đặt \(\sqrt{x+5}=a; \sqrt{x+2}=b(a,b\geq 0)\)
\(\Rightarrow ab=\sqrt{(x+5)(x+2)}=\sqrt{x^2+7x+10}\)
PT trở thành:
\((a-b)(1+ab)=3\)
\(\Leftrightarrow (a-b)(1+ab)=(x+5)-(x+2)=a^2-b^2\)
\(\Leftrightarrow (a-b)(1+ab)-(a-b)(a+b)=0\)
\(\Leftrightarrow (a-b)(1+ab-a-b)=0\)
\(\Leftrightarrow (a-b)(a-1)(b-1)=0\)
Vì \(a\neq b\Rightarrow \left[\begin{matrix} a-1=0\\ b-1=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} a=\sqrt{x+5}=1\\ b=\sqrt{x+2}=1\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=-4\\ x=-1\end{matrix}\right.\). Vì $x\geq -2$ nên chỉ có $x=-1$ là nghiệm duy nhất.
Câu 2:
ĐK: \(-4\leq x\leq 4\)
Ta có: \((\sqrt{x+4}-2)(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow \frac{(x+4)-2^2}{\sqrt{x+4}+2}.(\sqrt{4-x}+2)=2x\)
\(\Leftrightarrow x.\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}=2x\)
\(\Leftrightarrow x\left(\frac{\sqrt{4-x}+2}{\sqrt{x+4}+2}-2\right)=0\)
\(\Rightarrow \left[\begin{matrix} x=0\\ \sqrt{4-x}+2=2\sqrt{x+4}+4(*)\end{matrix}\right.\)
Xét $(*)$
Đặt \(\sqrt{4-x}=a; \sqrt{x+4}=b\) thì ta có hệ:
\(\left\{\begin{matrix} a^2+b^2=8\\ a+2=2b+4\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a^2+b^2=8\\ a=2(b+1)\end{matrix}\right.\)
\(\Rightarrow 4(b+1)^2+b^2=8\)
\(\Leftrightarrow 5b^2+8b-4=0\Leftrightarrow (5b-2)(b+2)=0\)
\(\Rightarrow b=\frac{2}{5}\) (do \(b\geq 0)\)
\(\Rightarrow x+4=b^2=\frac{4}{25}\Rightarrow x=\frac{-96}{25}\) (t/m)
Vậy \(x\in \left\{ \frac{-96}{25}; 0\right\}\)
1) \(ĐK:\orbr{\begin{cases}0\le x\le2-\sqrt{3}\\x\ge2+\sqrt{3}\end{cases}}\)
\(x+1+\sqrt{x^2-4x+1}=3\sqrt{x}\Leftrightarrow x-5+\sqrt{x^2-4x+1}=3\sqrt{x}-6\)\(\Leftrightarrow\frac{-6\left(x-4\right)}{x-5-\sqrt{x^2-4x+1}}=\frac{9\left(x-4\right)}{3\sqrt{x}+6}\Leftrightarrow\left(x-4\right)\left(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}\right)=0\)
Xét phương trình \(\frac{9}{3\sqrt{x}+6}+\frac{6}{x-5-\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(18\sqrt{x}-9\right)+9\left(x-\sqrt{x^2-4x+1}\right)=0\)\(\Leftrightarrow\frac{81\left(4x-1\right)}{18\sqrt{x}+9}+\frac{9\left(4x-1\right)}{x+\sqrt{x^2-4x+1}}=0\Leftrightarrow\left(4x-1\right)\left(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}\right)=0\)
Dễ thấy \(\frac{81}{18\sqrt{x}+9}+\frac{9}{x+\sqrt{x^2-4x+1}}>0\)với mọi x thỏa mãn điều kiện nên 4x - 1 = 0 hay x = 1/4
Vậy phương trình có tập nghiệm S = {4; 1/4}
e làm câu dễ nhất ^^
\(\sqrt{x+1}+\sqrt{4-x}+\sqrt{\left(x+1\right)\left(4-x\right)}=5\left(đk:-1\le x\le4\right)\)
\(< =>\left(\sqrt{x+1}-1\right)+\left(\sqrt{4-x}-2\right)+\left(\sqrt{\left(x+1\right)\left(4-x\right)}-2\right)=0\)
\(< =>\frac{x}{\sqrt{x+1}+1}-\frac{x}{\sqrt{4-x}+2}+\frac{x\left(3-x\right)}{\sqrt{\left(x+1\right)\left(4-x\right)+2}}=0\)
\(< =>x=0\)
1 . \(\sqrt{x^4-2x^2+1}=x-1\)
<=> \(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=> \(x^2-1=x-1\)
<=> \(x^2-x=0\)(vậy pt vô nghiệm)
1,\(\sqrt{\left(x^2-1\right)^2}=x-1\)
<=>\(x^2-x=0\)
<=>\(\orbr{\begin{cases}x1=0\\x2=1\end{cases}}\)
1,\(\sqrt{\left(x^2+4\right)}=5-\sqrt{\left(x^2+10\right)}\)
<=>\(x^2+4=25-10\sqrt{x^2+10}+x^2+10\)
<=>x^2 = -0.39 vô lý => vô nhiệm
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình
1)\(\left(DKXD:x\ge0\right)\)
\(\Leftrightarrow x+\sqrt{x\left(x+1\right)}=1\)
\(\Leftrightarrow\sqrt{x\left(x+1\right)}=1-x\)
\(\Leftrightarrow x\left(x+1\right)=1-2x+x^2\left(0\le x\le1\right)\)
\(\Leftrightarrow x^2+x=1-2x+x^2\)
\(\Leftrightarrow3x-1=0\)
\(\Leftrightarrow x=\frac{1}{3}\)
Vậy pt có nghiệm \(x=\frac{1}{3}\)
,=. x ={0;-1;-4;5/3}