Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
ai nay dung kinh nghiem la chinh
cau a)
ta thay \(10+6\sqrt{3}=\left(1+\sqrt{3}\right)^3\)
\(6+2\sqrt{5}=\left(1+\sqrt{5}\right)^2\)
khi do \(x=\frac{\sqrt[3]{\left(\sqrt{3}+1\right)^3}\left(\sqrt{3}-1\right)}{\sqrt{\left(1+\sqrt{5}\right)^2}-\sqrt{5}}\)
\(x=\frac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{1+\sqrt{5}-\sqrt{5}}\)
\(x=\frac{3-1}{1}=2\)
suy ra
x^3-4x+1=1
A=1^2018
A=1
b)
ta thay
\(7+5\sqrt{2}=\left(1+\sqrt{2}\right)^3\)
khi do
\(x=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\frac{1}{\sqrt[3]{\left(1+\sqrt{2}\right)^3}}\)
\(x=1+\sqrt{2}-\frac{1}{1+\sqrt{2}}=\frac{\left(1+\sqrt{2}\right)^2-1}{1+\sqrt{2}}=\frac{2+2\sqrt{2}}{1+\sqrt{2}}\)
x=2
thay vao
x^3+3x-14=0
B=0^2018
B=0
Câu 1: Đề bài sai, với điều kiện đề bài đã cho thì Q vẫn nguyên tại \(x=0\), đề bài đúng phải là \(\forall x>0\) thì Q không nguyên (ko hiểu sao lại có điều kiện \(x\ne4\) , cái này hoàn toàn ko ảnh hưởng gì tới bài toán)
\(A=Q^2=\frac{x+4\sqrt{x}+4}{x+4}\Leftrightarrow Ax+4A=x+4\sqrt{x}+4\)
\(\Leftrightarrow\left(A-1\right)x-4\sqrt{x}+4A-4=0\)
\(\Delta'=4-\left(4A-4\right)\left(A-1\right)\ge0\)
\(\Leftrightarrow=-A^2+2A\ge0\Rightarrow0\le A\le2\Rightarrow A\le2\)
\(\Rightarrow Q\le\sqrt{2}< 2\)
Mặt khác ta có \(\sqrt{x}+2=\sqrt{x}+\sqrt{4}>\sqrt{x+4}\)
\(\Rightarrow Q=\frac{\sqrt{x}+2}{\sqrt{x+4}}>1\) \(\Rightarrow1< Q< 2\Rightarrow Q\) không thể nhận giá trị nguyên
Câu 2: ĐKXĐ: \(x\ge-2\)
a/ \(\Leftrightarrow4\left(x^2+2x+3\right)+3\left(x+2\right)=8\sqrt{\left(x+2\right)\left(x^2+2x+3\right)}\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{x^2+2x+3}=b>0\end{matrix}\right.\) ta được:
\(3a^2-8ab+4b^2=0\Leftrightarrow\left(a-2b\right)\left(3a-2b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=2b\\3a=2b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2}=2\sqrt{x^2+2x+3}\\3\sqrt{x+2}=2\sqrt{x^2+2x+3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2+7x+10=0\left(vn\right)\\4x^2-x-6=0\end{matrix}\right.\) \(\Rightarrow x=\frac{1\pm\sqrt{97}}{8}\)
b/ ĐKXĐ: \(\left[{}\begin{matrix}x\ge7\\-5\le x\le-2\end{matrix}\right.\)
\(\Leftrightarrow3x^2-11x-22=7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}\)
\(\Leftrightarrow3\left(x^2-5x-14\right)+4\left(x+5\right)-7\sqrt{\left(x^2-5x-14\right)\left(x+5\right)}=0\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-5x-14}=a\ge0\\\sqrt{x+5}=b\ge0\end{matrix}\right.\) ta được:
\(3a^2-7ab+4b^2=0\Leftrightarrow\left(a-b\right)\left(3a-4b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=b\\3a=4b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-5x-14}=\sqrt{x+5}\\3\sqrt{x^2-5x-14}=4\sqrt{x+5}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-6x-19=0\\9x^2-61x-206=0\end{matrix}\right.\) \(\Rightarrow x=...\)
Bài 3: \(3\left(\sqrt{2x^2+1}-1\right)=x\left(1+3x+8\sqrt{2x^2+1}\right)\)
\(\Leftrightarrow\left(3-8x\right)\sqrt{2x^2+1}=3x^2+x+3\)
\(\Rightarrow\left(3-8x\right)^2\left(2x^2+1\right)=\left(3x^2+x+3\right)^2\)
\(\Leftrightarrow119x^4-102x^3+63x^2-54x=0\)
\(\Leftrightarrow x\left(7x-6\right)\left(17x^2+9\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{6}{7}\end{cases}}\)
Thử lại, ta nhận được \(x=0\)là nghiệm duy nhất của phương trình