Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
A = 5 + 5^2 + 5^3 +...+ 5^8
A = ( 5 + 5^2 ) + ( 5^3 + 5^4 ) +...+ (5^7 +5^8)
A = 1.(5+5^2) + 5^2 . (5+5^2) +...+ 5^6.(5+5^2)
A = 1.30 + 5^2.30 +...+ 5^6.30
A = (1+5^2+...+5^6).30
Vì trong 2 thừa số có 1 thừa số chia hết cho 30 nên A chia hết cho 30
B = 3 + 3^3 + 3^5 +...+ 3^29
B = (3+ 3^3 +3^5)+...+(3^25+3^27+3^29)
B = 1.(3+3^3+3^5)+...+3^24. (3+3^3+3^5)
B = 1.273+...+3^24.273
B = (1+...+3^24).273
Vì trong 2 thừa số có 1 thừa số chia hết cho 273 nên B chia hết cho 273
A=5+5^2+5^3+...+5^20
=(5+5^2)+(5^3+5^4)+...+(5^19+5^20)
=(5+5^2)+5^2(5+5^2)+...5^18(5+5^2)
=30+5^2.30+5^4.30+5^6.30+..+5^18.30
=30(1+5^2+5^4+5^6+..+5^18)(chia hết cho 30)
Vậy A là bội của 30
a) \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\cdot\left(5+5^2\right)+...+5^6\cdot\left(5+5^2\right)\)
\(=\left(5+5^2\right)\cdot\left(1+5^2+...+5^6\right)\)
\(=30\cdot\left(1+5^2+...+5^6\right)\)chia hết cho 30.
b) \(B=3+3^3+3^5+3^7+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{26}\cdot\left(3+3^3+3^5\right)\)
\(=\left(3+3^3+3^5\right)\cdot\left(1+3^6+...+3^{26}\right)\)
\(=273\cdot\left(1+3^6+3^{26}\right)\)chia hết cho 273.
Bài 3:
a: Ta có: \(A=5+5^2+5^3+...+5^8\)
\(=\left(5+5^2\right)+5^2\left(5+5^2\right)+5^4\left(5+5^2\right)+5^6\left(5+5^2\right)\)
\(=30\left(1+5^2+5^4+5^6\right)⋮30\)
b: \(B=3+3^3+3^5+...+3^{29}\)
\(=\left(3+3^3+3^5\right)+3^6\left(3+3^3+3^5\right)+...+3^{24}\left(3+3^3+3^5\right)\)
\(=273\left(1+3^6+...+3^{24}\right)⋮273\)