Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1.2.5+3.4.15+4.8.20+7.14.350}{2.5.11+6.10.33+8.20.44+14.35.770}=\frac{1.2.5+1.3.2.2.3.5+1.2.2.8.4.5+1.7.7.2.70.5}{2.5.11+2.3.2.5.3.11+2.4.4.5.4.11+2.7.7.5.70.11}=\frac{1.2.5+1.2.5.18+1.2.5.64+1.2.5.3430}{2.5.11+2.5.11.18+2.5.11.64+2.5.11.3430}\)
\(=\frac{1.2.5.\left(1+18+64+3430\right)}{2.5.11.\left(1+18+64+3430\right)}=\frac{1}{11}\)
Bài 2:
\(E=\frac{4}{3.5}+\frac{4}{5.7}+\frac{4}{7.9}+...+\frac{4}{97.99}\)
\(\Rightarrow E=2\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\right)\)
\(\Rightarrow E=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow E=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(\Rightarrow E=2.\frac{32}{99}\)
\(\Rightarrow E=\frac{64}{99}\)
Vậy \(E=\frac{64}{99}\)
Để chứng minh phân số đó tối giản, ta phải chứng minh được chúng là 2 số nguyên tố cùg nhau
Tham khảo :
Gọi d = ƯCLN ( 2n + 3 ; 3n + 5 )
=> 2n + 3 chia hết cho d
3n + 5 chia hết cho d
=> 3 ( 2n + 3 ) chia hết cho d
2 ( 3n + 5 ) chia hêt cho d
=> 6n + 9 và 6n + 10 chia hết cho d
=> 1 chia hết cho d => d = 1
=> 2n + 3 và 3n + 5 là 2 số nguyên tố cùng nhau
Vậy phân số 2n + 3 / 3n + 5 là phân số tối giản
Gọi d là ƯC(2n+3; 3n+5)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}3\left(2n+3\right)⋮d\\2\left(3n+5\right)⋮d\end{cases}\Rightarrow}\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}}}\)
\(\Rightarrow\left(6n+9\right)-\left(6n+10\right)⋮d\)
\(\Rightarrow6n+9-6n-10⋮d\)
\(\Rightarrow\left(6n-6n\right)-\left(10-9\right)⋮d\)
\(\Rightarrow0-1⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d\inƯC\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\frac{2n+3}{3n+5}\) là phân số tối giản