Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+3+32+33+...330=> 3S=3+32+33+....+331=>3S - S = 331 - 1= 34.7+3 --1 = (34)7.27 - 1=(...1).27-1=(...27)-1=(...26)
=>chữ số tận cùng của S là 26:2=13
vì số chính phương ko có t/c là 3 => S ko phải là số chính phương
tick mình nha
Ta có: 31 = ...3
32 = ..9
33 = ..7
34 = ...1
35 = ...3
Vậy chu kì chữ số tận cùng của lũy thừa 3 có 4 số là 3,9,7,1.
Mà 20 : 4 = 5 ( không dư)
=> Chữ số tận cùng của 31 + 32 + ... + 320 là chữ số 1.
Mà trong tổng các số hạng của S còn có thêm chữ số 1 => Chữ số tận cùng của S = 2.
Mà không có số nào mà căn bậc hai có chữ số tận cùng là 2 nên S không phải là số chính phương.
S = 1 + 3 + 32 + 33 +...+ 320
3S= 3.(1+3+32+33+....320)
3S= 3+32+33+...+320+ 321
3S-S=321-1
2S=321-1
S=321- 1 / 2
321 chia cho 2 nhưng vẫn giữ nguyên s như thế nhé mk viết ra cho bạn hiểu thoi
Bài 1: P là lẻ, vì nếu P chẵn thì P = 2 => P + 4 = 6 là hợp số.
*) P = 3 => P + 4 = 7; P + 20 = 23 => hợp lí.
*) P > 3 => P phải là số không chia hết cho 3 vì nếu nó chia hết cho 3 thì không phải là hợp số (ngoài số 3)
=> P = 3k + 1 hoặc 3k + 2
+) Với P = 3k + 1 => P + 20 = 3k + 21 chia hết cho 3 => loại
+) Với P = 3k + 2 ==> P + 4 = 3k + 6 chia hết cho 3 => loại
Vậy P chỉ có thể = 3
Bài 2: S = 30 + 31 + 32 + ... + 3123
S = (30 + 31 + 32 + 33) + ... + (3120 + 3121 + 3122 + 3123)
S = 30(1 + 31 + 32 + 33) + ... + 3120.( 1 + 31 + 32 + 33)
S = 30.40 + ... + 3120.40
S = 40.(30 + ... + 3120) = 4.10.40.(30 + ... + 3120)
Vì tích chứa 10 => S chia hết cho 10.
S = 1 + 3 + 32 + ... + 3123
S = ( 1 + 3 + 32 + 33 ) + ( 34 + 35 + 36 + 37 ) + ... + ( 3120 + 3121 + 3122 + 3123 )
S = 1.40 + 34(1+3+32+33) + ... + 3120.(1+3+32+33)
S = 1.40 + 34.40 + ... + 3120.40
S = 4.10.(1+34+...+3120) chia hết cho 10
Hình như câu 2 bạn viết bị sai đề
Đáng lẽ phải là:
S = 1+3+32+33+34+...+330
Thế mới đúng chứ!
Mình giải cho
Giải:
S = 1+3+32+33+34+...+330
3S = 3 ( 1+3+32+33+34+...+330)
= 3+32+33+34+...+330+331
3S - S = (3+32+33+34+...+330+331) - (1+3+32+33+34+...+330)
2S = 331- 1 = ...7 - 1 = ...6
Vì S có chữ số tận cùng là 6 nên S là số chính phương
Ta có công thức :
\(n^0+n^1+n^2+...+n^x=\frac{n^{x+1}-1}{n-1}\)
\(\Rightarrow3^0+3^1+3^2+....+3^{30}=\frac{3^{31}-1}{3-1}=308836698141963\)
b) Vậy chữ số tận cùng của \(S\)là 3.
c) Ta có thể nhận thấy số chính phương bằng chữ số tận cùng.
Ta có: 12 = 1 ( chữ số tận cùng )
22 = 4 ( ........................ )
32 = 9 ( ........................ )
42 = 6 (.........................)
52 = 5 (.........................)
62 = 6 ; 72 = 9; 82 = 64; 92 = 81
=> Không có số tự nhiên nào lũy thừa lên có chữ số tận cùng là 3. Vây S không phải là số chính phương.
Ta có: S = 1 + 31 + 32 + 33 +...+ 330
=> 3S = 3 + 32 + 33 + 34 + ...+ 331
=> 3S - S = (3 + 32 + 33 + 34 + ...+ 331) - (1 + 31 + 32 + 33 +...+ 330)
=> 2S = 331 - 1
Lại có: 3311 = (34)7 . 33 = (...1)7 . 27 = (...1) .27 = (...7) . 27 = (...7) => 2S có c/s tân cùng là; 7 - 1 = 6
=> 3S có chữ số tận cùng là 3 hoặc 8 mà chính phương ko có chữ số tận cùng là 3 hoặc 8
=> 3S ko phải chính phương
Câu a mình không biết =>
\(S=1+3+3^2+3^3+...+3^{30}\Rightarrow3S=3+3^2+3^3+...+3^{31}\Rightarrow3S-S=3^{31}-1=3^{4.7+3}-1=\left(3^4\right)^7.27-1=\left(...1\right).27-1=\left(...27\right)-1=\left(...26\right)\)=> Chữ số tận cùng của S là 26: 2 = 13
b/
Vì scp ko có t/c là 3 => S ko là scp