Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg AHB và tg AHC,ta có:
AH chung
gBAH=gCAH(tia phân giác của góc A cắt BC tại H)
AB=AC(gt)
=>tg AHB =tg AHC(c-g-c)
Xét tg ABC,có:AB=AC (gt)
=>tg ABC cân tại A
mà AH là tia phân giác
=>AH là đường cao
=>AH vuông góc vs BC
Ta có:g BAH+g ABH=g AHB=90*
và gDHB+gDBH=gBDH=90*
=>góc HAB = góc BHD
gợi ý phần c
gọi F là giao điểm của AH và DE
Xét tg ADH và tg AEH,có
AH chung
ADH=AEH=90
DAH=EAH
=>tg ADH =tg AEH(ch-gn)
=>AD=AE
=>tg ADE cân tại A
mà AF là tia phân giác
=>AF vuông góc vs DE
ta có BHF=EFH=90
=>DE//BC
p/s:gợi ý thôi nên trình bày cẩn thận hơn nhé.
a. Ta có: \(\Delta ABC\) vuông tại \(A\)
\(\Rightarrow\) \(S_{\Delta ABC}=\frac{1}{2}AH.BC=\frac{1}{2}AB.AC\)
\(\Rightarrow AH.BC=AB.AC\)
\(\Rightarrow AH=\frac{AB.AC}{BC}\)
\(\Rightarrow\)\(\frac{1}{AH}=\frac{BC}{AB.AC}\)
\(\Rightarrow\)\(\frac{1}{AH^2}=\frac{BC^2}{AB^2.AC^2}\) (1)
Lại có: \(BC^2=AB^2+AC^2\) (định lý Pi-ta-go)
(1) \(\Rightarrow\) \(\frac{1}{AH^2}=\frac{AB^2+AC^2}{AB^2+AC^2}\)
\(\Rightarrow\) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\) (đpcm)
Câu a
Xét tam giác ABD và AMD có
AB = AM từ gt
Góc BAD = MAD vì AD phân giác BAM
AD chung
=> 2 tam guacs bằng nhau
Câu b
Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD
Bd = bm vì 2 tam giác ở câu a bằng nhau
Góc BDE bằng MDC đối đỉnh
=> 2 tam giác bằng nhau
1: \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)
nên \(BC\cdot AH=AB\cdot AC\)
2:
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AC^2=CH\cdot BC\)
Bài 1:
Giải:
Ta có: \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}\)
Trong t/g ABC vuông tại A, áp dụng định lí Py-ta-go ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+AC^2=15^2=225\)
Đặt \(\frac{AB}{3}=\frac{AC}{4}=k\left(k>0\right)\Rightarrow\left\{\begin{matrix}AB=3k\\AC=4k\end{matrix}\right.\)
Mà \(AB^2+AC^2=225\)
\(\Rightarrow9k^2+16k^2=225\)
\(\Rightarrow25k^2=225\)
\(\Rightarrow k^2=9\)
\(\Rightarrow k=3\)
\(\Rightarrow\left[\begin{matrix}AB=3.3=9\\AC=3.4=12\end{matrix}\right.\)
Vậy AB = 9 cm; AC = 12 cm
2/ áp dụng định lí Py - ta - go vào tam tam giác vuông AHB ta có:
AH2 + BH2 = AB2
=> BH.HC + BH2 = AB2
=> BH( HC + BH ) = AB2
=> BH.BC = AB2 (1)
áp dụng định lí Py - ta - go vào tam giác vuông AHC ta có:
AH2 + HC2 = AC2
=> BH.HC + HC2 = AC2
=> HC( BH + HC ) = AC2
=> HC.BC = AC2 (2)
Từ 1 và 2 ta có:
=> BH.BC + HC.BC = AB2 + AC2
=> BC( BH + HC ) = AB2 + AC2
=> BC.BC = AB2 + AC2
=> BC2 = AB2 + AC2
Theo định lí Py - ta - go đảo
=> \(\Delta ABC\) vuông tại A (đpcm)
A H C C