Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{100^2}\)
=> A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{99.100}\)
=> A < \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{99}-\frac{1}{100}\)
=> A < 1 - 1/100
=> A < 99/100 < 1
b) \(A=\frac{n+3}{n-2}=\frac{n-2+5}{n-2}=1+\frac{5}{n-2}\)
Để A có giá trị nguyên <=> 5 chia hết cho n - 2
<=> n - 2 thuộc Ư(5) = {1; -1; 5; -5}
Lập bảng:
n - 2 | 1 | -1 | 5 | -5 |
n | 3 | 1 | 7 | -3 |
Vậy ....
Ta có: A = \(\frac{10^{2019}+1}{10^{2020}+1}\)
=> 10A = \(\frac{10^{2020}+10}{10^{2020}+1}=\frac{\left(10^{2020}+1\right)+9}{10^{2020}+1}=1+\frac{9}{10^{2020}+1}\)
B = \(\frac{10^{2020}+1}{10^{2021}+1}\)
=> 10B = \(\frac{10^{2021}+10}{10^{2021}+1}=\frac{10^{2021}+1+9}{10^{2021}+1}=1+\frac{9}{10^{2021}+1}\)
Do \(\frac{9}{10^{2020}+1}>\frac{9}{10^{2021}+1}\)=> \(1+\frac{9}{10^{2020}+1}>1+\frac{9}{10^{2021}+1}\)
=> 10A > 10B
=> A > B
a) \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
\(A< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1+1-\frac{1}{50}\)
\(=2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
b) Ta thấy : 21 = 3 .7 ( 3 ; 7 ) = 1
để chứng minh B \(⋮\)21 , ta cần chứng minh B \(⋮\)3 và 7
Ta có :
B = 21 + 22 + 23 + 24 + ... + 230
B = ( 2 + 22 ) + ( 23 + 24 ) + ... + ( 229 + 230 )
B = 2 . ( 1 + 2 ) + 23 . ( 1 + 2 ) + ... + 229 . ( 1 + 2 )
B = 2 . 3 + 23 . 3 + ... + 229 . 3
B = ( 2 + 23 + ... + 229 ) . 3 \(⋮\)3 ( 1 )
Lại có : B = 21 + 22 + 23 + 24 + ... + 230
B = ( 21 + 22 + 23 ) + ( 24 + 25 + 26 ) + ... + ( 228 + 229 + 230 )
B = 2 . ( 1 + 2 + 22 ) + 24 . ( 1 + 2 + 22 ) + ... + 228 . ( 1 + 2 + 22 )
B = 2 . 7 + 24 . 7 + ... + 228 . 7
B = ( 2 + 24 + ... + 228 ) . 7 \(⋮\)7 ( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)B \(⋮\)21
a) Ta thấy: 1/2^2<1/1.2
1/3^2<1/2.3
1/4^2<1/3.4
…………...
1/100^2<1/99.100
=>A<1/1.2+1/2.3+1/3.4+…+1/99.100=99/100
Mà 99/100<1 => 1/22 + 1/32 + 1/42 + ... + 1/1002<1
b)Ta thấy : 1/101+1/102+1/103+…+1/150>1/150+1/150+1/150+…+1/150(50 số hạng)
=>A>50/150>1/3 (1)
Ta thấy : 1/101+1/102+1/103+…+1/150<1/100+1/100+1/100+…+1/100(50 số hạng)
=>A<1/2 (2)
Từ (1) và (2) =>1/3<A<1/2
c) Ta thấy : 1/11 + 1/12 + 1/13 + ... + 1/20>1/20+1/20+1/20+…+1/20(10 số hạng)
=>1/11 + 1/12 + 1/13 + ... + 1/20>1/2
a) A = 20 + 21 + 22 + ... + 299
2A = 21 + 22 + 23 + ... + 2100
2A - A = (21 + 22 + 23 + ... + 2100) - (1 + 2 + 22 + ... + 299)
A = 2100 - 1
A + 1 = 2100 - 1 + 1 = 2100 = (250)2
\(\Rightarrow\) A là số chính phương
b) B = 3 + 32 + 33 + ... + 399
3B = 32 + 33 + 34 + ... + 3100
3B - B = (32 + 33 + 34 + ... + 3100) - (3 + 32 + 33 + ... + 399)
2B = 3100 - 3
2B + 3 = 3100 - 3 + 3 = 3100 = (350)2
\(\Rightarrow\) B là số chính phương
a)(n-1).(n+2)+12 không chia hết cho 9
Giả sử tồn tại số nguyên n sao cho
(n-1).(n+2)+12 chia hết cho9
suy ra (n-1).(n+2)+12 chia hết cho 3
mà 12 chia hết cho 3
Nên (n-1).(n+2) chia hết cho 3 (1) (vì 3 là số nguyên tố )
ta có n-1-n+2=n-1-n-2=3
Mà 3 chia hêt cho 3
nên (n-1).(n+2) hoặc cùng chia hết cho 3,hoặc cùng không chia hết cho 3 (2)
Từ (1)và (2)suy ra n-1 chia hết cho 3 và n+2 chia hết cho3
Suy ra (n-1).(n+2) chia hết cho 3.3
Suy ra (n-1).(n+2) chia hết cho 9
Mà 12 không chia hết cho 9
Suy ra điều giả sử là sai
Suy ra (n-1).(n+2) không chia hết cho 9
vậy......
câu b làm tương tự
giup voi,làm ơn