K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2020

a) P = 1 + 3 + 32 + ... + 398

= (1 + 3 + 32) + (33 + 34 + 35) + ... (396 + 397 + 398)

= 1 (1 + 3 + 32) + 33 (1 + 3 + 32) + ... + 396 (1 + 3 + 32)

= 13 + 33 . 13 + ... + 396 . 13

= 13 (1 + 33 + ... + 396)

Vì 13 chia hết cho 13 nên 13 (1 + 33 + ... + 396) chia hết cho 13

hay P chia hết cho 13 (đpcm)

b) Ta có: P = 1 + 3 + 32 + ... + 398

=> 3P = 3 + 32 + 33 + ... + 399

=> 3P - P = 3 + 32 + 33 + ... + 399 - 1 - 3 - 32 - ... - 398

2P = 399 - 1 = 33 . (34)24 - 1 = 27 . (...1) - 1 = ...7 - 1 = ...6

=> P có chữ số tận cùng là 2 hoặc 8

Mà số chính phương không có tận cùng là 2 hoặc 8

=> P không phải là số chính phương (đpcm)

27 tháng 10 2020

cảm ơn bạn nhiều nha Triệu Linh Chi

29 tháng 10 2018

a) Vì S có 99 số hạng nên ta chia thành 33 nhóm, mỗi nhóm 3 số hạng như sau\(S=\left(1+3^1+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^{96}+3^{97}+3^{98}\right)\)

\(S=13+\left(3^3.1+3^3.3+3^3.3^2\right)+...+\left(3^{96}.1+3^{96}.3+3^{96}.3^2\right)\)

\(S=13+3^3.\left(1+3+3^2\right)+...+3^{96}.\left(1+3+3^2\right)\)

\(S=13+3^3.13+...+3^{96}.13⋮13\)(đpcm)

29 tháng 10 2018

a)   S= 1+3+3+33 +............+398

       S=(1+ 3+ 32) +...............+ (396 +397 +398)

       S= 13+..............+396x(1+3+33)

       S= 13+...............+396x13

       S=13x(1+..........396)

Vì 13x(1+...........396)  : 13 thì hết nên => S chia hết cho 13

4 tháng 11 2021

anh / chị  ơi bạn được giảng để giải bài này rồi thì anh / chị có thể giảng lại cho em dc ko cô em giao bài nó giống nhưng em ko hiểu ạ

9 tháng 11 2014

-)Ta có C=3+32+33+...+3n=3(1+3+32+...+3n-1)

Để C chính phương thì 1+3+32+...+3n-1 phải chia hết cho 3, điều này vô lý vì 1+3+32+...+3n-1 chia cho 3 dư 1=> C không chính phương.

-) 47x5y chia hết cho 2, 5 nên y phải =0.

Mặt khác tổng các chữ số là 4+7+x+5+0=16+x. Để 47x5y chia hết cho 3 và 9 thì 16+x phải chia hết cho 3 và 9 tức x=2.

Vậy số cần tìm 47250

11 tháng 12 2014

bài 1 

a,có

b,ko là chính phương

29 tháng 8 2018

Tính 3A, sau đó trừ A

29 tháng 8 2018

a. Ta có 3A= 3+3^2+...+3^31

Vậy 3A-A=2A= 3-1-3 +3^31=> A=\(\frac{3^{31}-1}{2}\)

b. A=(3.3^30-1)/2= (3.27^10-1)/2= [3.(27^2)^5-1]/2 = \(\frac{3x729^5-1}{2}\)

Ta co \(729^5\) có số cuối là 9 => 3.\(729^5\)có số cuối là 7, -1 đi có số cuối là 6, chia 2 có số cuối là 3

Vậy A có số cuối là 3 => A không thể là 1 số chính phương

c. A-1= 3+ 3^2+3^3+3^4+3^5+3^6+....+3^25+3^26+3^27+3^28+3^29+3^30 

(Từ 3 đến 3^30 có 30 số, chia làm 6 nhóm)

=3(1+3+9+27+81+243) + 3^6 (1+3+..+243) +....+ 3^24(1+3+...+243)

=364 (3+3^6+...+3^24) Ta có 364 chia hết 7 vậy (A-1) chia hết 7

9 tháng 11 2023

1)

a) �=3+32+33+34+35+36+....+328+329+330

⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔�=3.13+34.13+....+328.13

⇔�=13(3+34+....+328)⋮13(����)

b) �=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔�=3.364+....+325.364

⇔�=364(3+35+310+....+325)

 

2) �=3+32+33+....+330

⇔3�=3(3+32+33+....+330)

⇔3�=32+33+34+....+330+331

⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)

⇔2�=331−3

⇔�=331−32

Vậy A không phải là số chính phương
Học tốt nha

6 tháng 1 2021

giúp e giải vs e đang cần gấp

6 tháng 1 2021

a, \(A=3+3^2+...+3^{120}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)

\(=4\left(3+3^3+3^5+...+3^{119}\right)\)

\(\Rightarrow A⋮4\)

\(A=3+3^2+...+3^{120}\)

\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)

\(=13\left(3+3^4+...+3^{118}\right)\)

\(\Rightarrow A⋮13\)

b, \(3A=3^2+3^3+...+3^{121}\)

\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)

Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0

\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0

c, Đề là \(2A+3\) thì có vẻ hợp lí hơn

\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3