Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+\frac{1}{7x9}\right)-\left(\frac{1}{2x4}+\frac{1}{4x6}+\frac{1}{6x8}\right).\)
Đặt A là biểu thức trong ngoặc đơn thứ nhất bà B là biểu thức trong ngoặc đơn thứ 2
\(2A=\frac{3-1}{1x3}+\frac{5-3}{3x5}+\frac{7-5}{5x7}+\frac{9-7}{7x9}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}=1-\frac{1}{9}=\frac{8}{9}\)
\(A=\frac{8}{9}:2=\frac{4}{9}\)
\(2B=\frac{4-2}{2x4}+\frac{6-4}{4x6}+\frac{8-6}{6x8}=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}\)
\(2B=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\Rightarrow B=\frac{3}{8}:2=\frac{3}{16}\)
\(S=A-B=\frac{4}{9}-\frac{3}{16}\)
\(A=\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right)......\left(1-\frac{1}{1275}\right)\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(\Rightarrow S=\frac{1}{2}\left(1-\frac{1}{3}-\frac{1}{2}+\frac{1}{4}+\frac{1}{3}-\frac{1}{5}-\frac{1}{4}+\frac{1}{6}+\frac{1}{5}-\frac{1}{7}-\frac{1}{6}+\frac{1}{8}+\frac{1}{7}-\frac{1}{9}-\frac{1}{8}+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}\left(1+\frac{1}{10}\right)\)
\(\Rightarrow S=\frac{1}{2}.\frac{11}{10}\)
\(\Rightarrow S=\frac{11}{20}\)
1)\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)
\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(t=x^2+x\) ta có:
\(t\left(t-4\right)=t^2-4t+4-4\)
\(=\left(t-2\right)^2-4\ge-4\)
Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)
Đặt \(t=x^2+5x+5\) ta có:
\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
Đặt \(t=x^2-4x+3\) ta có:
\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)
Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)
Vậy Min=-1 khi x=2
a) \(5^{x+1}-2.5^x=375\)
\(\Rightarrow5^x\left(5-2\right)=375\)
\(\Rightarrow5^x.3=375\)
\(\Rightarrow5^x=125=5^3\)
\(\Rightarrow x=3\)
b) \(9^{x+1}-5.3^{2x}=324\)
\(\Rightarrow3^{2\left(x+1\right)}-5.3^{2x}=324\)
\(\Rightarrow3^2\left(3^{x+1}-5.3^x\right)=324\)
\(\Rightarrow9.3^x\left(3-5\right)=324\)
\(\Rightarrow3^x.\left(-2\right)=36\)
\(\Rightarrow3^x=-18=3^2.\left(-2\right)\)(vô lí vì 3x không chia hết cho 2)
c) \(\left(1-x\right)^5=32=2^5\)
\(\Rightarrow1-x=2\)
\(\Rightarrow x=-1\)
d) \(3.5^{2x+1}-3.25^x=300\)
\(\Rightarrow3\left(5^{2x}.5-5^{2x}\right)=300\)
\(\Rightarrow5^{2x}\left(5-1\right)=100\)
\(\Rightarrow5^{2x}.4=100\)
\(\Rightarrow5^{2x}=25=5^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=1\)
a, \(B=2x^3-x^2-x+2x^3+x-3=4x^3-x^2-3\)
b, thay x=1 vào B ta đc
4.1-1-3=0
thay x=1/2 vào B ta đc:
\(4.\left(\dfrac{1}{2}\right)^3-\left(\dfrac{1}{2}\right)^2-3=-\dfrac{11}{4}\)
vậy..............
Bạn xem bài tương tự tại đây. Đề là:
Tính $(1+\frac{1}{1.3})(1+\frac{1}{2.4})....(1+\frac{1}{2021.2023})$