Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{2}+\frac{5}{14}+\frac{2}{63}+\frac{3}{108}+\frac{1}{156}\)
\(=\frac{1}{1.2}+\frac{5}{2.7}+\frac{2}{7.9}+\frac{3}{9.12}+\frac{1}{12.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
\(=1-\frac{1}{13}=\frac{12}{13}\)
A = \(\dfrac{2}{3}\) + \(\dfrac{3}{18}\) + \(\dfrac{1}{42}\) + \(\dfrac{2}{63}\) + \(\dfrac{3}{108}\)
A = \(\dfrac{2}{1\times3}\) + \(\dfrac{3}{3\times6}\) + \(\dfrac{1}{6\times7}\)+ \(\dfrac{2}{7\times9}\) + \(\dfrac{3}{9\times12}\)
A = \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{7}\) + \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{12}\)
A = 1 - \(\dfrac{1}{12}\)
A = \(\dfrac{11}{12}\)
chuyển đổi lại : (7x - 3) : 12 = 13
=> (7x - 3) = 13 * 12
=> 7x - 3 = 156
=> 7x = 159
=> x= 159/7
[(7x - 31) : 5] * 36 = 7236
=> [(7x - 31) : 5] = 7236 : 36 = 201
=> (7x - 31) : 5 = 201
=> 7x - 31 = 1005
=> 7x = 1036
=> x = 148
1 + 2 + 3 + 4 + 5 +... + 100 + x = 5350
SSH : \(\left(100-1\right):1+1=100\)
=> tổng : \(\frac{\left(1+100\right)\cdot100}{2}=5050\)
=> 5050 + x = 5350
=> x = 5350 - 5050 = 300
80 - 9(x - 4) = 35
=> 9(x - 4) = 80 - 35 = 45
=> x - 4 = 45 : 9
=> x - 4 = 5
=> x = 9
(3x - 21) : 4 + 108 = 114
=> (3x - 21) : 4 = 114 - 108 = 6
=> 3x - 21 = 24
=> 3x = 45
=> x = 15
[(6x - 72) : 2 - 84]*14 = 2814
=> [(6x - 72) : 2 - 84] = 201
=> (6x - 72) : 2 - 84 = 201
=> (6x - 72) : 2 = 285
=> 6x - 72 = 570
=> 6x = 642
=> x = 107
28x + 12x = 80
=> 40x = 80
=> x = 2
249 - 7(1 + x) = 200
=> 7(1 + x) = 49
=> 1 + x = 7
=> x = 6
20 - [(x - 5) * 7 + 4] = 2
=> [(x - 5) * 7 + 4] = 18
=> (x - 5)*7 + 4 = 18
=> (x - 5) * 7 = 14
=> x - 5 = 2
=> x = 7
\(\frac{7x-33}{12}=13\)
\(7x-33=13\cdot12\)
\(7x-33=156\)
\(7x=156+33\)
\(7x=189\)
\(x=\frac{189}{7}=27\)
\(\frac{7x-31}{5}\cdot36=7236\)
\(\frac{7x-31}{5}=\frac{7236}{36}\)
\(\frac{7x-31}{5}=201\)
\(7x-31=201\cdot5\)
\(7x-31=1005\)
\(7x=1005+31\)
\(7x=1036\)
\(x=\frac{1036}{7}=148\)
\(1+2+3+4+5+..+100+x=5350\)
\(\left(1+2+3+4+5+...+100\right)+x=5350\)
Phần 1 + 2 + 3 + 4 + 5 + ... + 100 có số số hạng là :
\(\frac{100-1}{1}+1=100\) ( số hạng )
\(\Rightarrow\frac{\left(100+1\right)\cdot100}{2}+x=5350\)
\(5050+x=5350\)
\(x=5350-5050=300\)
\(80-9\left(x-4\right)=35\)
\(9\left(x-4\right)=80-35\)
\(9\left(x-4\right)=45\)
\(x-4=\frac{45}{9}\)
\(x-4=5\)
\(x=5+4=9\)
\(\frac{3x-21}{4}+108=114\)
\(\frac{3x-21}{4}=114-108\)
\(\frac{3x-21}{4}=6\)
\(3x-21=6\cdot4\)
\(3x-21=24\)
\(3x=24+21\)
\(3x=45\)
\(x=\frac{45}{3}=15\)
\(14\left(\frac{6x-72}{2}-84\right)=2814\)
\(3x-36-84=\frac{2814}{14}\)
\(3x-120=201\)
\(3x=201+120\)
\(3x=321\)
\(x=\frac{321}{3}=107\)
\(28x+12x=80\)
\(x\left(28+12\right)=80\)
\(x\cdot40=80\)
\(x=\frac{80}{40}=2\)
\(249-7\left(1+x\right)=200\)
\(-7\left(1+x\right)=200-249\)
\(-7\left(1+x\right)=-49\)
\(1+x=\frac{-49}{-7}\)
\(1+x=7\)
\(x=7-1=6\)
\(20-7\left(x-5\right)+4=2\)
\(20-7\left(x-5\right)=2-4\)
\(20-7\left(x-5\right)=-2\)
\(-7\left(x-5\right)=-2-20\)
\(-7\left(x-5\right)=-22\)
\(x-5=\frac{-22}{-7}\)
\(x=\frac{22}{7}+5=\frac{57}{7}\)
1a) \(\frac{10}{11}:\frac{11}{3}=\frac{10}{11}.\frac{3}{11}=\frac{30}{121}\)
b) \(3,42:0,75.8,4-6,8\)
\(=4,56.8,4-6,8=38,304-6,8=31,504\)
2a) \(\frac{21}{11}.\frac{22}{17}.\frac{68}{63}=\frac{21.22.68}{11.17.63}=\frac{7.3.2.11.17.4}{11.17.3.3.7}=\frac{2.4}{3}=\frac{8}{3}\)
b) \(\frac{5}{14}.\frac{7}{13}.\frac{26}{25}=\frac{5.7.26}{14.13.25}=\frac{5.7.13.2}{2.7.13.5.5}=\frac{1}{5}\)
\(\frac{10}{11}:1\frac{1}{3}\)
\(=\frac{10}{11}:\frac{4}{3}\)
\(=\frac{10}{11}\cdot\frac{3}{4}\)
\(=\frac{15}{22}\)
\(3,42:0,57\cdot8,4-6,8\)
\(=6\cdot8,4-6,8\)
\(=50,4-6,8\)
\(43,6\)
2.
\(\frac{21}{11}\cdot\frac{22}{17}\cdot\frac{68}{63}\)
\(=\frac{21\cdot22\cdot68}{11\cdot17\cdot63}\)
\(=\frac{21\cdot11\cdot2\cdot17\cdot4}{11\cdot17\cdot21\cdot3}\)
\(=\frac{̸21\cdot̸11\cdot2\cdot̸17\cdot4}{̸11\cdot̸17\cdot̸21\cdot3}\)
\(=\frac{8}{3}\)
\(\frac{5}{14}\cdot\frac{7}{13}\cdot\frac{26}{25}\)
\(=\frac{5\cdot7\cdot26}{14\cdot13\cdot25}\)
\(=\frac{̸5\cdot̸7\cdot̸13\cdot2}{̸7\cdot2\cdot̸13\cdot̸5\cdot5}\)
\(=\frac{2}{10}\)
2F = 2/10 x 12 + 2 / 12 x 14 + 2 / 14 x 16 + ... + 2 / 108 x 110
= 1/10 - 1/12 + 1/12 - 1/14 + 1/14 - 1/16 + ... + 1/108 -1/110
= 1/10 - 1/110
= 1/11
\(E=\frac{2}{10x12}+\frac{2}{12x14}+...+\frac{2}{108x110}\)
\(\Rightarrow E=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+...+\frac{1}{108}-\frac{1}{110}\)
\(\Rightarrow E=\frac{1}{10}-\frac{1}{110}=\frac{10}{110}=\frac{1}{11}\)
Công thức :\(\frac{a}{n\left(n+a\right)}=\frac{1}{n}-\frac{1}{n+a}\)
\(E=\frac{2}{10\cdot12}+\frac{2}{12\cdot14}+\frac{2}{14\cdot16}+...+\frac{2}{108\cdot110}\)
\(E=\frac{1}{10\cdot12}+\frac{1}{12\cdot14}+\frac{1}{14\cdot16}+...+\frac{1}{108\cdot110}\)
\(E=\frac{1}{10}-\frac{1}{12}+\frac{1}{12}-\frac{1}{14}+\frac{1}{14}-\frac{1}{16}+...+\frac{1}{108}-\frac{1}{110}\)
\(E=\frac{1}{10}-\frac{1}{110}\)
\(E=\frac{11}{110}-\frac{1}{110}\)
\(E=\frac{10}{110}\)\(=\frac{1}{11}\)
Học tốt nha bạn !!!
\(\frac{1}{2}+\frac{5}{14}+\frac{2}{63}+\frac{3}{108}+\frac{1}{156}\)\(=\frac{12}{13}\)
TL:
\(\frac{1}{2}+\frac{5}{14}+\frac{2}{63}+\frac{3}{108}+\frac{1}{156}\)
\(=\frac{12}{13}\)