Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có: a = 1 + 2 + 3 + 4 +...+ n; b = 2n + 1 (n \(\inℕ\); n > 2)
Suy ra a = \(\frac{n\left(n+1\right)}{2}\)(a chẵn vì n > 2); b = 2n + 1 (b lẻ)
Vì n > 2
Nên a > 2 và b > 2
Mà a chẵn và b lẻ
Suy ra a không chia hết cho b và ngược lại
Vậy a và b là 2 số nguyên tố cùng nhau.
a) Để tích trên bằng 0 thì n + 3 = 0 hoặc n^2 + 1 = 0
Mà n^2 + 1 \(\ge\) 1 > 0 nên chỉ n + 3 = 0
=> n = -3
b) Tương tự như con a, bạn cũng xét n - 1 = 0 hoặc n^2 - 4 = 0
Ta được kết quả n = 1 hoặc n = 2
Ghi nhớ:nếu a và b nguyên tố cùng nhau thì a và b chỉ có ước chung là 1
- gọi d là ước chung nếu có của cả a và b
==> a chia hết cho d nên 8a cũng chia hết cho d
đồng thời : b chia hết cho d nên b^2 cũng chia hết cho d ( b mũ 2 )
==> ( b^2 - 8.a ) chia hết cho d
mà : a = 1 + 2 + 3 + ... + n = n ( n + 1 ) / 2 = ( n^2 + n ) /2
và b^2 = ( 2n + 1 )^2 = 4n^2 + 4n + 1
==> : (b^2 - 8a ) = ( 4n^2 + 4n +1 ) - ( 4n^2 + 4n ) = 1
vậy : ( 8a -- b^2 ) chia hết cho d <==> 1 chia hết cho d => d = 1
kl : ước chung của a và b là 1 nên a và b nguyên tố cùng nhau
\(A=1+2+3+4+....+n=\frac{\left(n+1\right)n}{2}\)
Gọi: d=UCLN(A,B)
Ta có:
\(\hept{\begin{cases}\frac{\left(n+1\right)n}{2}⋮d\\2n+1⋮d\end{cases}}\Leftrightarrow\hept{\begin{cases}n^2+n⋮d\\2n^2+n⋮d\end{cases}}\Leftrightarrow2n^2+n-n^2-n⋮d\Leftrightarrow n^2⋮d\)
\(\Leftrightarrow n^2+n-n^2⋮d\Leftrightarrow n⋮d\Leftrightarrow2n+1-2n⋮d\Leftrightarrow d=1\)
Vậy: A và B là 2 số nguyên tố cùng nhau
a )
Ta co S = ( 2 + 22 + 23 + 24 + 25 ) + ...... + ( 296 + 297 + 298 +299 + 2100 )
= 2 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 ) + .... + 296 ( 1 + 2 + 2.2 + 2.2.2 + 2.2.2.2 )
= 2.31 + .....+ 296.31
= 31 ( 2 + ... + 296 ) chia het cho 31
b ) Goi d laf UC ( 3n+1 ; 4n+1 )
=> 3n + 1 ⋮ d va 4n + 1 ⋮ d
=> 4(3n + 1)⋮ d va3(4n +1) ⋮ d
=> 12n + 4 ⋮ d và 12n + 3 ⋮ d
=> ( 12n + 4 ) - ( 12n + 3 ) ⋮ d
=> 1 ⋮ d => d = 1
Vi ƯC ( 3N+1;4N+1 ) = 1 => 3N+1;4N+1 là nguyên tố cùng nhau
c ) Xét x > 0
=> |x| + x = x+x = 2x = 0 => x = 0 ( loại )
Xét x < 0
=> |x| + x = - x + x = 0 ( tm)
Vậy x < 0
Gọi ƯCLN ( n+1,3.n+4) là a
Ta có : ( n+1) và ( 3.n+4)
Nên : n+1 chia hết cho a và 3.n+ 4 chia hết cho a
Nên : 3.n+3 Và 3.n+4 chia hết cho a
3.n+4 - 3.n-3 chia hết cho a
nên 1 chia hết cho a
nên a=1
Vậy ...
Gọi d \(\in\)ƯC(n+1;3n+4)
=> 3n+4 chia hết cho d
n+1 chia hết cho d =>3n+3 chia hết cho d
=>3n+4-3n-3 chia hết cho d
=>1 chia hết cho d
=>d=1
=>n+1 và 3n+4 là 2 số nguyên tố cùng nhau
=>đpcm
1/2^2<1/1*2
1/3^2<1/2*3
...
1/n^2<1/n(n-1)
Do đó; P<1-1/2+1/2-1/3+...+1/n-1-1/n=1-1/n=(n-1)/n<1