Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3 : ( 1 - 3/2x ) = 4 : ( 2 - x )
<=> \(\frac{3}{1-\frac{3}{2}x}=\frac{4}{2-x}\)
<=> 3 ( 2 - x ) = 4 ( 1 - 3/2x )
<=> 6 - 3x = 4 - 6x
<=> -3x + 6x = 4 - 6
<=> 3x = -2
<=> x = -2/3
b, 2.3x + 3x-1 = 7( 32 + 2.62 )
b, 2.3x + 3x-1 = 7( 32 + 2.62 )
<=> 2.3x + 3x-1 = 7.81
<=> 3x-1(2.3 + 1) = 7.81
<=> 3x-1.7 = 7.81
<=> 3x-1=81
<=> 3x-1 = 34
=> x - 1 = 4 => x = 5
\(\left(2x-3\right)^2=25\)
\(\Rightarrow\left(2x-3\right)^2=5^2\)
\(\Rightarrow2x-3=5\)
\(\Rightarrow2x=5+3\)
\(\Rightarrow2x=8\)
\(\Rightarrow x=4\)
Bài 1
A = \(\frac{3}{7}.\left(\frac{3}{7}\right)^{19}\)= \(\left(\frac{3}{7}\right)^{20}\)
B = \(\left[\left(-\frac{3}{7}\right)^5\right]^4\)= \(\left(-\frac{3}{7}\right)^{20}\)
Bài 2
a. (2x - 3)2 = 25
<=> \(\orbr{\begin{cases}2x-3=5\\2x-3=-5\end{cases}}\)
<=> \(\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
Vậy ...
b. \(\frac{27}{3^x}\)= 3
<=> 27 = 31+x
<=> 33 = 31+x
<=> 3 = 1 + x
<=> x = 2
a) A + ( x2y - 2xy2 + 5xy - 3 ) = -2x2y + xy2 + xy - 5
A = -2x2y + xy2 + xy - 5 - ( x2y - 2xy2 + 5xy - 3 )
A = -2x2y + xy2 + xy - 5 - x2y + 2xy2 - 5xy + 3
A = ( -2x2y - x2y ) + ( xy2 + 2xy2 ) + ( xy - 5xy ) + ( -5 + 3 )
A = -3x2y + 3xy2 + ( -4xy ) + ( -2 )
b) x = -1, y = 1
Thay x = -1, y = 1 vào đa thức A ta được :
\(-3\left(-1\right)^2\cdot1^2+3\left(-1\right)\cdot1^2+\left(-4\left(-1\right)\cdot1\right)+\left(-2\right)\)
\(=-3\cdot1+\left(-3\right)\cdot1+\left(4\cdot1\right)+\left(-2\right)\)
\(=\left(-3\right)+\left(-3\right)+4+\left(-2\right)\)
\(=-6+4+\left(-2\right)\)
\(=-4\)
Vậy A = -4 khi x = -1 , y = 1
Ta có \(\frac{1}{2}.2^x+2^{x+2}=2^8+2^5\)
\(\Rightarrow2^{x-1}+2^{x+2}=2^8+2^5\)
\(\Rightarrow2^{x-1}.\left(1+2^3\right)=2^5.\left(1+2^3\right)\)
\(\Rightarrow2^{x-1}=2^5\)
\(\Rightarrow x-1=5\)
\(\Rightarrow x=6\)