Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/ Ta có : abcd = (5c + 1 )^2
Với c = 6 => ( 5c + 1 )^2 = 31^2 = 961 < 1000
=> c \(\in\left\{7;8;9\right\}\)
Với c = 7 =>( 5c + 1 )^2 = 36^2 = 1296 ( loại ) Vì 9 khác 7
c = 8 => ( 5c + 1 )^2 = 41^ 2 = 1681 ( thỏa mãn )
c = 9 => ( 5c + 1 )^2 = 46^2 = 2116 ( loại ) vì 1 khác 9
Số dữ và có cái vô nghiệm ... câu này nhìn qua con làm thôi.
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
a, \(5x^2-x+4=0\)
Ta có : \(\left(-1\right)^2-4.4.5=1-80=-79< 0\)
Nên phương trình vô nghiệm
b, \(x^2+3x-2=0\)
Ta có : \(3^2-4.\left(-2\right)=9+8=17>0\)
Suy ra : \(x_1=\frac{-3-\sqrt{17}}{2};x_2=\frac{-3+\sqrt{17}}{2}\)
Ta có: Q(-1) = -(-1)2 + a.(-1) = -1 - a
Q(1) = -12 + a.1 = -1 + a
Mà Q(-1) = 2Q(1)
=> -1 - a = 2.(-1 + a)
=> -1 - a = -2 + 2a
=> -1 + 2 = 2a + a
=> 1 = 3a
=>a = 1 : 3
=> a = 1/3
Vậy a = 1/3
1. f(-2) = 3.(-2)2-1 = 3.4-1 = 11
f(1/4) = 3.(1/4)2-1=-13/16
2. f(x) = 47
=> 3x2 - 1 = 47
=> 3x2 = 48
=> x2 = 16
=> x = 4 hoặc x = -4
3. f(x) = f(-x)
<=> 3x2 - 1 = 3.(-x)2 - 1
Mà x2 = (-x)2
=> 3x2 - 1 = 3.(-x)2 - 1
=> f(x) = f(-x) (đpcm)
(x-1)200+(y+2)300=0
(x-1)^200 > 0 ; (y+2)^300>0
=> (x-1)^200 = 0 và (y + 2)^300 = 0
=> x - 1 = 0 và y + 2 = 0
=> x = 1 và y = - 2
thay vào rồi tính như bình thường thôi
Vì \(\left(x-1\right)^{200}\ge0\forall x\); \(\left(y+2\right)^{300}\ge0\forall y\)
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)
mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )
\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:
\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)
\(=2+40+4=46\)
\(\left(x-\frac{2}{5}\right)^2-1=8\)
\(\left(x-\frac{2}{5}\right)^2=9=3^2\)
\(\Rightarrow x-\frac{2}{5}=3\)
\(x=\frac{17}{5}\)
\(\left(x-\frac{2}{5}\right)^2-1=8\)
\(\Rightarrow\left(x-\frac{2}{5}\right)^2=9\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{2}{5}\right)^2=3^2\\\left(x-\frac{2}{5}\right)^2=\left(-3\right)^2\end{cases}\Rightarrow\orbr{\begin{cases}x-\frac{2}{5}=3\\x-\frac{2}{5}=-3\end{cases}\Rightarrow}\orbr{\begin{cases}x=3+\frac{2}{5}\\x=-3+\frac{2}{5}\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{17}{5}\\x=\frac{-13}{5}\end{cases}}}\)
Vì \(\left(x-1\right)^{2012}\ge0\forall x;\left(y-2\right)^{2010}\ge0\forall y;\left(x-z\right)^{2008}\ge0\forall x;z\)
Mà theo đề bài
\(\Rightarrow\hept{\begin{cases}x-1=0\\y-2=0\\x-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy x = z = 1 và y = 2
Ta có:
\(\left(x-1\right)^{2012}\ge0\)
\(\left(y-2\right)^{2010}\ge0\)
\(\left(x-z\right)^{2008}\ge0\)
\(\Rightarrow\left(x-1\right)^{2012}+\left(y-2\right)^{2010}+\left(x-z\right)^{2008}=0\)Khi \(\hept{\begin{cases}\left(x-1\right)^{2012}=0\\\left(y-2\right)^{2010}=0\\\left(x-z\right)^{2008}=0\end{cases}}\)
Từ đó ta tính được x=1; y=2; z=1