Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+32+33+...+320
A=(1+3)+(32+33)+(34+35)+...+(319+320)
A= 4+32(1+3)+34(1+3)+......+319(1+3)
A=4+32.4+34.4+....+319.4
A=4.(32+34+...+319) =>A chia hết cho 4
0+(
D=(7+7^2)+(7^3+7^4)+...+(7^2009+7^2010)
D=7.(1+7)+7^3.(1+7)+...+7^2009.(1+7)
D=8.(7+7^3+...+7^2009)
=> D chia hết cho 8
D=(7+7^2+7^3)+(7^4+7^5+7^6)+...+(7^2008+7^2009+7^2010)
D=7.(1+7+49)+7^4.(1+7+49)+...+7^2008.(1+7+49)
D=57.(7+7^4+...+7^2008)
=> D chia hết cho 57
chúc bạn học tốt nha
nhớ ủng hộ mk với nha
a) A=2^1+2^2+2^3+...+2^2010
A=(2+2^2)+(2^3+2^4)+...+(2^2009+2^2010)
A=2.(1+2)+2^3 . (1+2)+...+2^2009.(1+2)
A=3.(2+2^3+2^5+...+2^2009)
=> A chia hết cho 3
A=(2+2^2+2^3)+(2^4+2^5+2^6)+...+(2^2008+2^2009+2010)
A=2.(1+2+4)+2^4.(1+2+4)+...+2^2008.(1+2+4)
A=7.(2+2^4+...+2^2008)
=> A chia hết cho 7
bạn ghi câu hỏi tách nhau ra thành 4 câu khác nhau đi mk trả lời cho ko thì dài lắm
S2 = 2 + 22 + 23 + 24 + ... + 299 + 2100
Tổng S2 có 100 số, nhóm 5 số vào 1 nhóm thì vừa hết.
Ta có:
S2= (2 + 22 + 23 + 24 + 25) + ... + (296 + 297 + 298 + 299 + 2100)
= 2.(1 + 2 + 22 + 23 + 24) + ... + 296. (1 + 2 + 22 + 23 + 24)
= 2. 31 + ... + 296 . 31
= 31 (2 + ...+ 296)
D= 22000 + 22002 = 22000(1 + 22) = 22000.5 = 21990.(210.5) = 21990.5120 chia hết cho 5120
S2 = 2 + 22 + 23 + 24 + ... + 299 + 2100
Tổng S2 có 100 số, nhóm 5 số vào 1 nhóm thì vừa hết.
Ta có:
S2= (2 + 22 + 23 + 24 + 25) + ... + (296 + 297 + 298 + 299 + 2100)
= 2.(1 + 2 + 22 + 23 + 24) + ... + 296. (1 + 2 + 22 + 23 + 24)
= 2. 31 + ... + 296 . 31
= 31 (2 + ...+ 296)
cho 4 số 9và9và9và9 +,-,x,: sao cho bằng 100 ( lưu ý có thể nghép 99)
\(S_2=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}.\left(1+2+2^2+2^3+2^4\right)\)\(S_2=2.31+....+2^{96}.31\)
\(S_2=31.\left(2+...+2^{96}\right)\)chia hết cho 31
Suy ra \(S_2\)chia hết cho 31
\(D=2^{1990}.\left(2^{10}+2^{12}\right)\)
\(D=2^{1990}.5120\)chia hết cho 5120
Vậy suy ra D chia hết cho 5120
a) Gọi A = 4 + 4 ^1 + 4 ^2 + ... + 4^60
Vì 4 chia hết cho 2; 4^2 chia hết cho 2 và nói chung là tất cả các số hạng đều là số chẵn
=> A chia hết cho 2
\(A=4\cdot\left(4+1\right)+4^3\cdot\left(1+4\right)+...+4^{59}\cdot\left(1+4\right)\)
\(A=4\cdot5+4^3\cdot5+...+5^{59}\cdot5\)
\(A=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\left(đpcm\right)\)
b)
\(B=5\cdot\left(1+5\right)+5^3\cdot\left(1+5\right)+...+5^9\cdot\left(1+5\right)\)
\(B=5\cdot6+5^3\cdot6+...+5^9\cdot6\)
\(B=6\cdot\left(5+5^3+...+5^9\right)⋮6\left(đpcm\right)\)
\(1+2+2^2+2^3+2^4+...+2^{22}+2^{23}\Leftrightarrow\left(1+2\right)+2^2\left(1+2\right)+...+2^{22}\left(1+2\right)\)
\(\Rightarrow3+2^2\cdot3+...2^{22}\cdot3\Leftrightarrow3\cdot\left(2^0+2^1+...+2^{22}\right)⋮3\left(đpcm\right)\)
\(\Rightarrow3\cdot\frac{\left(2^0+2^1+...+2^{22}\right)}{7}\Leftrightarrow3\cdot7\left(2^0+2^1+2^2\right)⋮3,7\left(đpcm\right)\)