K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2024

\(\dfrac{1}{1\text{x}2}+\dfrac{1}{2\text{x}3}+...+\dfrac{1}{2021\text{x}2022}\\ =\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2021}-\dfrac{1}{2022}\\ =\dfrac{1}{1}-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\)

21 tháng 5 2023

A = \(\dfrac{1}{1\times2}\) + \(\dfrac{1}{2\times3}\) + \(\dfrac{1}{3\times4}\)+...+ \(\dfrac{1}{2021\times2022}\)

A = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)+...+ \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\)

A = 1 - \(\dfrac{1}{2022}\)

A = \(\dfrac{2021}{2022}\)

Ta đặt biểu thức là:

A = 1/1 x 2 + 1/2 x 3 + 1/3 x 4 + .... + 1/9 x 10

A = 1 - 1/2 + 1/2 - 1/3 +1/3 - 1/4 + ... + 1/9 - 1/10

A = 1 - 1/10

A = 9/10

19 tháng 6 2016

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{9}-\frac{1}{10}\)

\(=1-\frac{1}{10}\)

\(=\frac{9}{10}\)

24 tháng 4 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{15.16}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{15}-\frac{1}{16}\)

\(=1-\frac{1}{16}\)

\(=\frac{15}{16}\)

24 tháng 4 2017

Kết quả là 15/16 nha bn, k mk nhé, ok

28 tháng 11 2018

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{8\times9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{1}-\frac{1}{9}=\frac{8}{9}\)

28 tháng 11 2018

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{8\cdot9}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{8}-\frac{1}{9}\)

\(=\frac{1}{1}-\frac{1}{9}\)

\(=\frac{8}{9}\)

21 tháng 3 2017

1/1.2+1/2.3+1/3.4+...+1/999.1000+1

=1-1/2+1/2-1/3+1/3-1/4+...+1/998-1/999+1/999-1/1000+1

=1-1/1000+1

=999/1000+1

=1999/1000

Chuẩn ko cần chỉnh

21 tháng 3 2017

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)

\(=1-\frac{1}{1000}+1\)

\(=\frac{999}{1000}+1\)

\(=\frac{1999}{1000}\)

8 tháng 3 2016

1 và 999/1000

8 tháng 3 2016

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.100}+1\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{100}\)+1

=\(1-\frac{1}{100}\)+1

=\(\frac{99}{100}+1\)

=\(\frac{199}{100}\)

5 tháng 3 2016

1999/1000

tớ gặp bài này rồi, nhớ k nhé

4 tháng 7 2019

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

4 tháng 7 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

=\(1-\frac{1}{100}\)

=\(\frac{99}{100}\)

Ta có : A = \(\frac{1}{1\text{x}2}+\frac{1}{2\text{x}3}+\frac{1}{3\text{x}4}+...+\frac{1}{X\text{x}\left(X+1\right)}\)

           A = \(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\)

           A =  \(\frac{1}{1}-\frac{1}{x+1}\)

           A = \(\frac{x}{x+1}\)

Ủng hộ mik nhá !!!!

14 tháng 8 2017

Ta có:

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=?\)

\(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=?\)

\(\Rightarrow\frac{1}{1}-\frac{1}{x+1}=?\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{1}-?\)

\(\Rightarrow x+1=?\Leftrightarrow x=?\)

28 tháng 6 2016

1/1.2 +1/2.3 +1/3.4 +...+1/98.99 +1/99.100

=1-1/2+1/2-1/3+1/3-1/4+...+1/98-1/99+1/99-1/100

=1-1/100=100/100-1/100=99/100

28 tháng 6 2016

Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

   \(\Rightarrow\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

   \(\Rightarrow1-\frac{1}{100}=\frac{99}{100}\)