Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2x}{15}+\dfrac{2x}{35}+\dfrac{2x}{63}+...+\dfrac{2x}{195}=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+...+\dfrac{2}{195}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+...+\dfrac{2}{13\cdot15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{13}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\left(\dfrac{1}{3}-\dfrac{1}{15}\right)=\dfrac{4}{5}\\ x\cdot\dfrac{4}{15}=\dfrac{4}{5}\\ x=\dfrac{4}{5}:\dfrac{4}{15}\\ x=3\)
Gọi \(D=\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\)
\(2D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\\ 2D+D=\left(1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}\right)+\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\right)\\ 3D=1-\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{16}-\dfrac{1}{32}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}\\ 3D=1-\dfrac{1}{64}< 1\\ \Rightarrow D=\dfrac{1-\dfrac{1}{64}}{3}< \dfrac{1}{3}\)
Vậy \(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{8}-\dfrac{1}{16}+\dfrac{1}{32}-\dfrac{1}{64}< \dfrac{1}{3}\)
Bài giải chi tiết đây em nhé:
\(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\)+...+ \(\dfrac{1}{\left(2x-1\right)\left(2x+1\right)}\) = \(\dfrac{9}{19}\)
\(\dfrac{1}{2}\)(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+ \(\dfrac{2}{7.9}\)+...+ \(\dfrac{2}{\left(2x-1\right)\left(2x+1\right)}\)) = \(\dfrac{9}{19}\)
\(\dfrac{1}{2}\)( \(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\)+ \(\dfrac{1}{7}\) - \(\dfrac{1}{9}\) +... + \(\dfrac{1}{2x-1}-\dfrac{1}{2x+1}\)) = \(\dfrac{9}{19}\)
\(\dfrac{1}{2}\) ( 1 - \(\dfrac{1}{2x+1}\)) = \(\dfrac{9}{19}\)
1 - \(\dfrac{1}{2x+1}\) = \(\dfrac{9}{19}\) : \(\dfrac{1}{2}\)
1 - \(\dfrac{1}{2x+1}\) = \(\dfrac{18}{19}\)
\(\dfrac{1}{2x+1}\) = \(1-\dfrac{18}{19}\)
\(\dfrac{1}{2x+1}\) = \(\dfrac{1}{19}\)
\(2x+1\) = 19
2\(x\) = 19 - 1
2\(x\) = 18
\(x\) = 18: 2
\(x\) = 9
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(2\left(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}\right)=2.\frac{15}{93}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(x=\frac{90}{2}=45\)
Vậy \(x=45\)
\(C=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+...+\frac{1}{\left(2x+1\right)\times\left(2x+3\right)}\)
\(=\frac{1}{2}\times\left(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{\left(2x+1\right)\times\left(2x+3\right)}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\Leftrightarrow2x+3=93\)
\(\Leftrightarrow x=45\).
Ta có :
\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+..............+\dfrac{1}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{15}{93}\)
\(\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+..............+\dfrac{2}{\left(2x+1\right)\left(2x+3\right)}=\dfrac{30}{93}\)
\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+..............+\dfrac{1}{2x+1}-\dfrac{1}{2x+3}=\dfrac{30}{93}\)
\(\dfrac{1}{3}-\dfrac{1}{2x+3}=\dfrac{30}{93}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{30}{93}=\dfrac{1}{2x+3}\)
\(\Rightarrow\dfrac{1}{93}=\dfrac{1}{2x+3}\)
\(\Rightarrow2x+3=93\)
\(2x=90\)
\(\Rightarrow x=45\)
Vậy \(x=45\) là giá trị cần tìm
~ Chúc bn học tốt ~
Bạn ơi xem lại đề là 1/(2x+1).(2x+3) hay là 2/(2x+1).(2x+3) nhé .Tại mình thử giải với 2/(2x+1).(2x+3) thì mới ra kết quả
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{\left(2x+1\right)\left(2x+3\right)}=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{\left(2x+1\right)\left(2x+3\right)}\right)=\frac{15}{93}\)
\(\frac{1}{2}\)\(\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2x+1}-\frac{1}{2x+3}\right)\)\(=\frac{15}{93}\)
\(\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2x+3}\right)=\frac{15}{93}\)
\(\frac{1}{3}-\frac{1}{2x+3}=\frac{15}{93}:\frac{1}{2}=\frac{10}{31}\)
\(\frac{1}{2x+3}=\frac{1}{3}-\frac{10}{31}=\frac{1}{93}\)
\(\Rightarrow2x+3=93\rightarrow2x=90\rightarrow x=45\)