Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1+\frac{1}{2005}\right)\left(1+\frac{1}{2006}\right)...\left(1+\frac{1}{2020}\right)\)
\(=\frac{2006}{2005}\cdot\frac{2007}{2006}\cdot...\cdot\frac{2021}{2020}\)
\(=\frac{2021}{2005}\)
a)=1/2*2/3......*19/20
=1/20
b)=3/2*4/3......*2008/2007
=3/2007
A=1/2x2/3x3/4x...x2018/2019x2019/2020=1/2020
A = 1/2 x 2/3 x 3/4 x ... x 2018/2019 x 2019/2020 = 1/2020
Ta có: 1 + ( 1 + 2 ) + ( 1 + 2 + 3 ) + ... + ( 1 + 2 + 3 +...+ 2020)
= ( 1 + 1 + 1 +... + 1 ) + (2 + 2 +...+ 2 ) + ( 3 + 3+...+ 3 ) + ...+ 2020
Có 2020 số 1 ; 2019 số 2 ; 2018 số 3 ;... ; 1 số 2020
= 2020 x 1 + 2019 x 2 + 2018 x 3 + ... + 2020x 1
=> \(M=\frac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+...+2020\times1}\)
= \(\frac{1\times2020+2\times2019+...+2020\times1}{1\times2020+2\times2019+...+2020\times1}=1\)