Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{2}{1\times4}+\dfrac{2}{4\times7}+\dfrac{2}{7\times10}+...+\dfrac{2}{97\times100}\)
\(=2.\left(\dfrac{1}{1\times4}+\dfrac{1}{4\times7}+\dfrac{1}{7\times10}+...+\dfrac{1}{97\times100}\right)\)
\(=2.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{97}-\dfrac{1}{100}\right)\)
\(=2.\left(1-\dfrac{1}{100}\right)\)
\(=2.\dfrac{99}{100}\)
\(=\dfrac{99}{50}\)
_____
b) \(\dfrac{3}{1\times5}+\dfrac{3}{5\times9}+\dfrac{3}{9\times13}+...+\dfrac{3}{97\times101}\)
\(=3.\left(\dfrac{1}{1\times5}+\dfrac{1}{5\times9}+\dfrac{1}{9\times13}+...+\dfrac{1}{97\times101}\right)\)
\(=3.\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{97}-\dfrac{1}{101}\right)\)
\(=3.\left(1-\dfrac{1}{101}\right)\)
\(=3.\dfrac{100}{101}\)
\(=\dfrac{300}{101}\)
Đặt \(B=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+\frac{2}{7\cdot10}+......+\frac{2}{100\cdot103}\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+.....+\frac{1}{100}-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\left(1-\frac{1}{103}\right)\)
\(B=\frac{2}{3}\cdot\frac{102}{103}\)
\(\Rightarrow B=\frac{68}{103}\)
Đặt \(A=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(A=\frac{2}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\left(1-\frac{1}{103}\right)\)
\(A=\frac{2}{3}\cdot\frac{102}{103}\)
\(A=\frac{68}{103}\)
S=1/1-1/4+1/4+1/7-1/7+1/10+...+1/100-1/103
S=1/1-1/103
S=102/103
Vì 102/103<1 nên S<1
\(S=\frac{1}{4}\times\left(\frac{4}{5\times9}+\frac{4}{9\times13}+\frac{4}{13\times17}+...+\frac{4}{41\times45}\right)\)
\(S=\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1}{17}+...+\frac{1}{41}-\frac{1}{45}\right)\)
\(S=\frac{1}{4}\times\left(\frac{1}{5}-\frac{1}{45}\right)\)
\(S=\frac{1}{4}\times\frac{8}{45}\)
\(S=\frac{1\times2}{1\times45}\)
\(S=\frac{2}{45}\)
Vậy \(S=\frac{2}{45}\)
Tk nha bn !!
Dấu \(.\)là dấu nhân
Ta có :
\(E=\frac{2}{1.4}+\frac{2}{4.7}+\frac{2}{7.10}+...+\frac{2}{100.103}\)
\(\Rightarrow E=\frac{2}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{2}{100.103}\right)\)
\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{100}-\frac{1}{103}\right)\)
\(\Rightarrow E=\frac{2}{3}.\left(1-\frac{1}{103}\right)\)
\(\Rightarrow E=\frac{2}{3}.\frac{102}{103}\)
\(\Rightarrow E=\frac{68}{103}\)
Vậy \(E=\frac{68}{103}\)
~ Ủng hộ nhé
\(E=\frac{2}{1\cdot4}+\frac{2}{4\cdot7}+...+\frac{2}{100\cdot103}\)
\(E=2\cdot\left(\frac{1}{1\cdot4}+\frac{1}{4\cdot7}+...+\frac{1}{100\cdot103}\right)\)
Gọi tổng trong ngoặc là F
\(\Rightarrow3F=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+...+\frac{3}{100\cdot103}\)
\(\Rightarrow3F=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\)
\(\Rightarrow3F=1-\frac{1}{103}=\frac{102}{103}\)
\(\Rightarrow F=\frac{102}{103\cdot3}=\frac{34}{103}\)
\(\Leftrightarrow E=2\cdot\frac{34}{103}=\frac{68}{103}\)
Vậy......
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
\(=\frac{11}{3}\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}\right)\)
\(=\frac{11}{3}\left(1-\frac{1}{103}\right)\)
Tự tính
\(\frac{11}{1.4}+\frac{11}{4.7}+...+\frac{11}{100.103}\)
= \(\frac{11}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+...+\frac{3}{100.103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\left(1-\frac{1}{103}\right)\)
= \(\frac{11}{3}.\frac{102}{103}\)
= \(\frac{374}{103}\)