Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Rút gọn tất cả các phân số ta có:
\(\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+\frac{4}{10}+\frac{5}{10}+\frac{6}{10}+\frac{7}{10}+\frac{8}{10}+\frac{9}{10}\)
\(=\frac{1+2+3+4+5+6+7+8+9}{10}=\frac{45}{10}=\frac{9}{2}\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+\frac{16}{40}+\frac{25}{50}\) \(+\frac{36}{60}+\frac{49}{70}+\frac{64}{80}+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{1}{5}+\frac{3}{10}+\frac{2}{5}+\frac{1}{2}+\frac{3}{5}+\frac{7}{10}+\frac{4}{5}+\frac{9}{10}\)
\(=\left(\frac{1}{10}+\frac{9}{10}\right)+\left(\frac{1}{5}+\frac{4}{5}\right)+\left(\frac{3}{10}+\frac{7}{10}\right)+\left(\frac{2}{5}+\frac{3}{5}\right)+\frac{1}{2}\)
\(=1+1+1+1+0,5\)
\(=4+0,5\)
\(=4,5\)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+.....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(9+1\right)\times\left(9+1-1\right):2}{10}\)
\(=\frac{10\times9:2}{10}\)
\(=\frac{45}{10}=4,5\)
\(a,=\dfrac{1}{10}+\dfrac{2}{10}+\dfrac{3}{10}+\dfrac{4}{10}+\dfrac{5}{10}+\dfrac{6}{10}+\dfrac{7}{10}+\dfrac{8}{10}+\dfrac{9}{10}=\dfrac{45}{10}=4,5\\ b,=\dfrac{4}{5}\times\left(\dfrac{3}{8}+\dfrac{5}{8}-\dfrac{7}{8}\right)\times2=\dfrac{8}{5}\times\dfrac{1}{8}=\dfrac{1}{5}=0,2\)
a) Rút gọn các phân số về tối giản, ta được:
\(\dfrac{1}{10}\)+\(\dfrac{2}{10}\)+\(\dfrac{3}{10}\)+\(\dfrac{4}{10}\)+\(\dfrac{5}{10}\)+\(\dfrac{6}{10}\)+\(\dfrac{7}{10}\)+\(\dfrac{8}{10}\)+\(\dfrac{9}{10}\)= kết quả là \(\dfrac{45}{10}\) ra số thập phân = \(4,5\)
b) \(\dfrac{4}{5}\) \(\times\) \(\left(\dfrac{3}{8}+\dfrac{5}{8}-\dfrac{7}{8}\right)\) = \(\dfrac{4}{5}\times\dfrac{1}{8}\) = \(\dfrac{4}{40}=\dfrac{1}{10}\)\(\div\dfrac{1}{2}\)
= \(\dfrac{2}{10}=0,2\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (\(\dfrac{2}{2}\) + \(\dfrac{3}{3}\) + \(\dfrac{4}{4}\) + \(\dfrac{5}{5}\)+ \(\dfrac{6}{6}+\dfrac{7}{7}+\dfrac{8}{8}\) + \(\dfrac{10}{10}\))
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x (1 + 1 +1 + 1+ 1+ 1+ 1 +1)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) x 1 x 8
= \(\dfrac{1}{2}\) + \(\)\(\dfrac{1}{2}\) x 8
= \(\dfrac{1}{2}\) + 4
= \(\dfrac{9}{2}\)
a; \(\dfrac{1}{4}\) + \(\dfrac{2}{5}\) + \(\dfrac{6}{8}\) + \(\dfrac{9}{15}\) + \(\dfrac{8}{1}\)
= (\(\dfrac{1}{4}\) + \(\dfrac{6}{8}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{9}{15}\)) + 8
= (\(\dfrac{1}{4}\) + \(\dfrac{3}{4}\)) + (\(\dfrac{2}{5}\) + \(\dfrac{3}{5}\)) + 8
= 1 + 1 + 8
= 2 + 8
= 10
b; \(\dfrac{1}{2}\) + \(\dfrac{2}{4}\) + \(\dfrac{3}{6}\) + \(\dfrac{4}{8}\) + \(\dfrac{5}{10}\) + \(\dfrac{6}{12}\) + \(\dfrac{7}{14}\) + \(\dfrac{8}{16}\) + \(\dfrac{9}{18}\) + \(\dfrac{10}{20}\)
= \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\)
= \(\dfrac{1}{2}\) x 10
= 5
1/10+4/20+9/30+16/40+25/50+36/60+49/70+64/80+81/90
=1/10+2/10+3/10+4/10+5/10+6/10+7/10+8/10+9/10
=1+2+3+4+5+6+7+8+9/10
=45/10 (tự rút gọn)
\(\frac{1}{10}+\frac{4}{20}+\frac{9}{30}+....+\frac{81}{90}\)
\(=\frac{1}{10}+\frac{2}{10}+\frac{3}{10}+...+\frac{9}{10}\)
\(=\frac{\left(1+2+3+.....+9\right)}{10}\)
\(=\frac{45}{10}=\frac{9}{2}\)
\(S=\frac{1}{10}+\frac{2^2}{20}+\frac{3^2}{30}+....+\frac{9^2}{90}=\frac{1}{10}+\frac{2}{10}+...+\frac{9}{10}=\frac{45}{10}=\frac{9}{2}\)