K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2019

\(10x=6y\)=> \(\frac{10x}{30}=\frac{6y}{30}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{x^2}{9}=\frac{y^2}{25}\)=> \(\frac{2x^2}{18}=\frac{y^2}{25}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x^2}{18}=\frac{y^2}{25}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)

=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{25}=4\end{cases}}\)=> \(\hept{\begin{cases}x=\pm6\\y=\pm10\end{cases}}\)

Ta có : \(2x=3y=5z\)=> \(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{\frac{1}{2}}=\frac{y}{\frac{1}{3}}=\frac{z}{\frac{1}{5}}=\frac{x+y-z}{\frac{1}{2}+\frac{1}{3}-\frac{1}{5}}=\frac{95}{\frac{19}{30}}=150\)

=> \(\hept{\begin{cases}\frac{x}{\frac{1}{2}}=150\\\frac{y}{\frac{1}{3}}=150\\\frac{z}{\frac{1}{5}}=150\end{cases}}\)=> \(\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)

Còn câu c thiếu dấu bằng và làm áp dụng tính chất tương tự

21 tháng 11 2016

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{x-1}{2}\) = \(\frac{y-2}{3}\) = \(\frac{z-3}{4}\) = \(\frac{2x-2}{4}\) = \(\frac{3y-6}{9}\) = \(\frac{z-3}{4}\)

= \(\frac{2x-2+3y-6-\left(z-3\right)}{4+9-4}\) = \(\frac{2x-2+3y-6-z+3}{9}\) = \(\frac{50-5}{9}\) = \(\frac{45}{9}\) = 5

Ta có: \(\frac{x-1}{2}\) = 5 => x - 1 = 10 => x = 11

\(\frac{y-2}{3}\) = 5 => y - 2 = 15 => y = 17

\(\frac{z-3}{4}\) = 5 => z - 3 = 20 => z = 23

Vậy x = 11 ; y = 17 ; z = 23

 

21 tháng 11 2016

a) \(\frac{x^3}{8}=\frac{y^3}{64}=\frac{z^3}{216}\)

\(\Rightarrow\frac{x^3}{2^3}=\frac{y^3}{4^3}=\frac{z^3}{6^3}\Rightarrow\frac{x}{2}=\frac{y}{4}=\frac{z}{6}\)

\(\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{4^2}=\frac{z^2}{6^2}\)

Áp dụng tính chất dãy tỉ sô bằng nhau , ta có :

\(\frac{x^2}{4}=\frac{y^2}{16}=\frac{z^2}{36}=\frac{x^2+y^2+z^2}{4+16+36}=\frac{14}{56}=\frac{1}{4}\)

\(\Rightarrow x^2=1;y^2=4;z^2=9\)

=> x = 1 hoặc -1

y = 2 hoặc -2

z = 3 hoặc -3

27 tháng 10 2016

a) \(\Rightarrow\frac{2x}{3}.\frac{1}{12}=\frac{3y}{4}.\frac{1}{12}=\frac{4z}{5}.\frac{1}{12}\)

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\)

Ánh dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{x}{18}=\frac{y}{16}=\frac{z}{15}=\frac{x+y+z}{18+16+15}=\frac{49}{49}=1\)

\(\Rightarrow\) x = 1 . 18 = 18

y = 1 . 16 = 16

z = 1 . 15 = 15

b)

Từ 4x = 3y ; 7y=5z => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\Rightarrow\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau :

\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow\) x = 2 . 15 = 30

y = 2 . 20 = 40

z = 2 . 28 = 56

c) từ 10x=6y \(\Rightarrow\) \(\frac{x}{6}=\frac{y}{10}\) \(\left(\frac{x}{6}\right)^2\)=\(\left(\frac{y}{10}\right)^2\) \(\Rightarrow\frac{x^2}{36}\)=\(\frac{y^2}{100}\) \(\Rightarrow\frac{2x^2}{72}=\frac{y^2}{100}\)

áp dụng tính chất của dãy tỉ số bằng nhau :

\(\frac{2x^2-y^2}{72-100}\) = \(\frac{-28}{-28}\) = 1

\(\Rightarrow\frac{x}{6}=1\) ; \(\frac{y}{10}=1\)

\(\Rightarrow x=6;y=10\)

hoặc \(\Rightarrow\frac{x}{6}=-1;\frac{y}{10}=-1\)

\(\Rightarrow x=-6;y=-10\)

Chúc bạn học tốt

27 tháng 10 2016

de ma

 

24 tháng 9 2019

Câu a,câu d mk làm rồi nhé

b, Ta có : \(\frac{x}{5}=\frac{y}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{9}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)

=> \(\hept{\begin{cases}\frac{x^2}{25}=\frac{1}{4}\\\frac{y^2}{9}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x^2=\frac{25}{4}\\y^2=\frac{9}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\pm\frac{5}{2}\\y=\pm\frac{3}{2}\end{cases}}\)

c, Đặt : \(\frac{x}{2}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\end{cases}}\)

=> x.y = 2k.3k = 6k2

=> 6k2 = 54

=> k2 = 9

=> k = \(\pm3\)

Như vậy ta tìm được x = 6  , y = 9 hay x = -6 , y = -9

24 tháng 9 2019

a) Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{124}{62}=2\)

\(\Rightarrow x=15.2=30;\)

\(y=20.2=40;\)

\(z=28.2=56\)

Vậy x = 30; y = 40 ; z = 56

b) Đặt \(\frac{x}{5}=\frac{y}{3}=k\)

\(\Rightarrow x=5k;y=3k\)

Khi đó \(x^2-y^2=4\)

\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)

\(\Rightarrow5^2.k^2-3^2.k^2=4\)

\(\Rightarrow25.k^2-9.k^2=4\)

\(\Rightarrow k^2.\left(25-9\right)=4\)

\(\Rightarrow k^2.16=4\)

\(\Rightarrow k^2.4^2=2^2\)

\(\Rightarrow k^2=\left(\frac{1}{2}\right)^2\)

\(\Rightarrow k=\pm\frac{1}{2}\)

Nếu \(k=\frac{1}{2}\Rightarrow x=5.\frac{1}{2}=\frac{5}{2};y=3.\frac{1}{2}=\frac{3}{2}\)

Nếu \(k=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}.5=-\frac{5}{2};y=-\frac{1}{2}.3=-\frac{3}{2}\)

Vậy các cặp (x;y) thỏa mãn là : \(\left(\frac{5}{2};\frac{3}{2}\right);\left(-\frac{5}{2};-\frac{3}{2}\right)\)

c) Đặt \(\frac{x}{2}=\frac{y}{3}=k\)

\(\Rightarrow x=2k;y=3k\)

Khi đó xy = 54

<=> 2k.3k = 54

=> 6.k2 = 54

=> k= 9

=> k2 = 32

=> \(k=\pm3\)

Nếu k = 3 => x = 2.3 = 6 ; y = 3.3 = 9

Nếu k = - 3 => x = 2.(-3) = 6 ; y 3.(-3) = 9

Vậy các cặp số (x;y) thỏa mãn là : (6;9) ; (-6;-9)

3 tháng 10 2016

bn dào khánh linh có vẻ jioi, mk làm 1 câu rùi bn lam tip, nếu k lam dc nt cho mk

a) x/6 = y/10

bn bình phuong tlt trên va nhân 2 ty số đầu mhe: 

x/6 = x2/36 = 2x2/72

y/10 = y2/100

đến đây thì dễ rùi, nếu hiu dc thi cám ơn mk đi vi mk dăt tay bn 

cung nhau di tren con dg tuoi sang

2 tháng 10 2016

a)10x=6y=>\(5x=3y\Rightarrow\frac{x}{3}=\frac{y}{5}=\frac{2x^2-y^2}{18-25}=\frac{-28}{-7}=4\)

b) \(\frac{x^3}{8}=\frac{x}{2}\)

\(\frac{y^3}{64}=\frac{y}{4}\)

\(\frac{z^3}{216}=\frac{z}{6}\)

=>........ áp dụng t.chất dãy tỉ số = nhau

c)

\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)

=>\(\frac{2x+3y-1}{6x}=\frac{2x+3y-1}{12}\)

=>6x=12( cùng  tử)

=>x=2

3 tháng 1 2018

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

=> \(\frac{2\left(x-1\right)}{4}=\frac{3\left(y-2\right)}{9}=\frac{z-3}{4}\)

=> \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-2-6+3}{9}=\frac{50-5}{9}=\frac{45}{9}\)= 5

=> x-1/2 = 5 => x-1=5 => x=6

y-2/3 = 5 => y-2 = 15 => y =17

z-3/4=5 => z-3=20 => z=23

3 tháng 1 2018

Đặt x/2=y/3=z/5=k => x=2k,y=3k,z=5k

Ta có: xyz=2k.3k.5k=30k3 = 810 => k3 = 27 => k=3

=> x=2.3=6

y=3.3=9

z=5.3=15

10 tháng 9 2017

ngu như con lợn

11 tháng 9 2017

bạn nói mình ngu sao bạn ko giải đi

2 tháng 11 2016

a/ theo bài ra, ta có:

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=x+y+z\)

áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+z+x+1+x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=x+y+z\)

  • nếu x+y+z = 0 => x = y= z = 0
  • nếu x+y+z khác 0 => x+y+z = \(\frac{1}{2}\)

=> y + z = \(\frac{1}{2}\) - x

=> z + x = \(\frac{1}{2}\) - y

=> x + y = \(\frac{1}{2}\) - z

=> \(\frac{x}{\frac{1}{2}-x+1}=\frac{y}{\frac{1}{2}-y+1}=\frac{z}{\frac{1}{2}-z-2}=\frac{1}{2}\)

=> 2x = \(\frac{1}{2}\) - x + 1 => x = \(\frac{1}{2}\)

=> 2y = \(\frac{1}{2}-y+1\) => y = \(\frac{1}{2}\)

=> 2z = \(\frac{1}{2}-z-2\) => z = \(\frac{-1}{2}\)

vậy x = 0 hoặc 1/2

y = 0 hoặc 1/2

z = 0 hoặc -1/2

2 tháng 11 2016

mk lm câu b bái 1 nha

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}\\=\frac{2x+3y-z-2-6+3}{9}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)

Suy ra

x - 1 = 5 . 2 = 10

x = 10 + 1

→ x = 11

y - 2 = 3 . 5 = 15

y = 15 + 2

→ y = 17

z - 3 = 4 . 5 = 20

z = 20 + 3

→ z = 23

 

 

14 tháng 10 2019

a) Ta có:

\(3x=4y\Rightarrow\frac{x}{4}=\frac{y}{3}\) (1)

\(3y=5z\Rightarrow\frac{y}{5}=\frac{z}{3}\) (2)

Từ (1) và (2) \(\Rightarrow\frac{x}{4}=\frac{y}{3};\frac{y}{5}=\frac{z}{3}.\)

Có: \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{20}=\frac{y}{15}.\)

\(\frac{y}{5}=\frac{z}{3}\Rightarrow\frac{y}{15}=\frac{z}{9}.\)

=> \(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}\)\(x-y-z=1.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{20}=\frac{y}{15}=\frac{z}{9}=\frac{x-y-z}{20-15-9}=\frac{1}{-4}=\frac{-1}{4}.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{20}=-\frac{1}{4}\Rightarrow x=\left(-\frac{1}{4}\right).20=-5\\\frac{y}{15}=-\frac{1}{4}\Rightarrow y=\left(-\frac{1}{4}\right).15=-\frac{15}{4}\\\frac{z}{9}=-\frac{1}{4}\Rightarrow z=\left(-\frac{1}{4}\right).9=-\frac{9}{4}\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(-5;-\frac{15}{4};-\frac{9}{4}\right).\)

Chúc bạn học tốt!