K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

1/0 ( chắc thé )

10 tháng 10 2021

TL: 1:0= Lỗi nhé bn

24 tháng 4 2020

1:0=0(sai)

0:1=0(đúng)

Đúng thì cho 1k nha!

24 tháng 4 2020

đúng hết

10 tháng 5 2018

M∈ (S) : (x0 - 2)2 + (y0-1)2 +(z0-1)2 =9.

A=x0+2y0+2z0=(x0-2)+2(y0-1)+2(z0-1)+6

Dùng BĐT bunhiacopski

[(x0-2)+2(y0-1)+2(z0-1)]2 ≤ (1+4+4).[(x0 - 2)2 + (y0-1)2 +(z0-1)2 ]

≤ 81

-9 ≤ (x0-2)+2(y0-1)+2(z0-1) ≤ 9.

-3 ≤ A ≤ 12. vậy GTNN của A = -3.

Dấu bằng xảy ra khi :

x0+2y0+2z0 = -3

\(\dfrac{x0-2}{1}=\dfrac{y0-1}{1}=\dfrac{z0-1}{1}\)

Giải hệ được x0=1, y0=z0=-1. Suy ra: x0+y0+z0 = -1

6 tháng 9 2019

Chọn C

8 tháng 2 2017

Ta có : \(5^{2x}-24.5^{x-1}-1=0\Leftrightarrow5^{2x}-\frac{24}{5}.5^x-1=0\)

Đặt \(t=5^x,\left(t>0\right)\)

a)Phương trở thành : \(\Leftrightarrow t^2-\frac{24}{5}.t-1=0\left[\begin{matrix}t=5\\t=-\frac{1}{5}\left(l\right)\end{matrix}\right.\)

Với \(t=5\) ta có \(x=1\)

Vậy phương trình có nghiệm là : \(x=1\)\(x=-1\)

ĐK: \(x>1\)

b)Ta có phương trình :\(\Leftrightarrow log_{\frac{1}{2}}+log_{\frac{1}{2}}\left(x-1\right)+log_26=0\Leftrightarrow log_{\frac{1}{2}}x\left(x-1\right)+log_26=0\)

\(\Leftrightarrow log_2x\left(x-1\right)=log_26\)

\(\Leftrightarrow x\left(x-1\right)=6\Leftrightarrow\left[\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Đôi chiếu điều kiện ta thấy phương trình có nghiệm \(x=3\)

24 tháng 7 2017

Chọn A

21 tháng 12 2017

NV
21 tháng 5 2020

Hệ vecto đã cho độc lập tuyến tính

Đặt \(\left\{{}\begin{matrix}x_1=\left(1;0;1\right)\\x_2=\left(1;-1;1\right)\\x_3=\left(1;2;0\right)\end{matrix}\right.\)

Chọn \(y_1=x_1\)

Chọn \(y_2=x_2+tx_1\) với \(t=-\frac{< x_2;y_1>}{< y_1;y_1>}=-\frac{1.1+0.\left(-1\right)+1.1}{1^2+0^2+1^2}=-1\)

\(\Rightarrow y_2=\left(1;-1;1\right)+\left(-1;0;-1\right)=\left(0;-1;0\right)\)

Chọn \(y_3=x_3+t_1y_1+t_2y_2\) với:

\(t_1=-\frac{< x_3;y_1>}{< y_1;y_1>}=-\frac{1.1+0.2+1.0}{1^2+0^2+1^2}=-\frac{1}{2}\)

\(t_2=-\frac{< x_3;y_2>}{< y_2;y_2>}=-\frac{1.0+2.\left(-1\right)+0.0}{0^2+\left(-1\right)^2+0^2}=-\frac{-2}{1}=2\)

\(\Rightarrow y_3=\left(1;2;0\right)+\left(-\frac{1}{2};0;-\frac{1}{2}\right)+\left(0;-2;0\right)=\left(\frac{1}{2};0;-\frac{1}{2}\right)\)

Vậy ta có hệ trực giao: \(\left\{{}\begin{matrix}y_1=\left(1;0;1\right)\\y_2=\left(0;-1;0\right)\\y_3=\left(\frac{1}{2};0;-\frac{1}{2}\right)\end{matrix}\right.\)

26 tháng 5 2020

Cảm ơn b nhé