Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,4x2.(5x3+2x-1)
=4x2.5x3+4x2.2x-4x2.1
20x5+8x3-4x2
2,4x3y2:x2
=4xy2
3,(15x2y3-10x3y3+6xy):5xy
15x2y3:5xy-10x3y3:5xy+6xy:5xy
3xy2-2x2y2+\(\dfrac{6}{5}\)
1: \(=20x^5+8x^3-4x^2\)
2: \(=4xy^2\)
3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)
4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)
6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)
7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)
8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=4x^2-2x+\dfrac{1}{4}\)
10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)
\(=\dfrac{x^2-7}{2\left(x-1\right)}\)
12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)
15:=x^3-y^3+2
1: \(=20x^5+8x^3-4x^2\)
2: \(=4xy^2\)
3: \(=3xy^2-2x^2y^2+\dfrac{6}{5}\)
4: \(=\dfrac{5x^3+10x^2+4x^2+8x+4x+8}{x+2}=5x^2+4x+4\)
5: \(=\dfrac{7}{2x}+\dfrac{11}{3y^2}=\dfrac{21y^2+22x}{6xy^2}\)
6: \(=\dfrac{4x^2-7x+3}{\left(4x-7\right)\left(x+2\right)}\)
7: \(=\dfrac{3x+3y-2x^3+2x^2y}{\left(x-y\right)\left(x+y\right)}\)
8: \(=\dfrac{1}{2}x^2y^2\left(4x^2-y^2\right)=2x^4y^2-\dfrac{1}{2}x^2y^4\)
9: \(=\left(x-\dfrac{1}{4}\right)\left(4x-1\right)=4\left(x-\dfrac{1}{4}\right)^2=4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)\)
\(=4x^2-2x+\dfrac{1}{4}\)
10: \(=\dfrac{3x^2+6-x}{x\left(2x+6\right)}=\dfrac{2x+6}{x\left(2x+6\right)}=\dfrac{1}{x}\)
11: \(=\dfrac{x+1}{2}-\dfrac{3}{x-1}\)
\(=\dfrac{x^2-7}{2\left(x-1\right)}\)
12: \(=\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}=\dfrac{x}{x+y}\)
15:=x^3-y^3+2
1) 4x\(^2\).(5x3+2x-1)
= 20x\(^5\)+8x\(^3\)-4x\(^2\).
2) 4x\(^3\): x2
= 4x
3) ( 15x2y3-10x3y3+6xy): 5xy
= 3xy2-2x2y2+\(\dfrac{6}{5}\)
4) (5x3+14x2+12x+8 ): (x+2)
= 5x2+4x+4
5)\(\dfrac{7}{2x}\)+\(\dfrac{11}{3y^2}\)
=\(\dfrac{7.3y^2+11.2x}{6xy^2}\) =\(\dfrac{21y^2+22x}{6xy^2}\) = \(\dfrac{21+22}{6}\) =\(\dfrac{43}{6}\)
6) \(\dfrac{x}{x+2}\) +\(\dfrac{3}{\left(x+2\right)\left(4x-7\right)}\)
7)\(\dfrac{3}{x-y}\)-\(\dfrac{2x^2}{x+y}\)
= \(\dfrac{3\left(x+y\right)-2\left(x+y\right)}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{3x+3y-2x-2y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{1}{x-y}\).
8)\(\dfrac{1}{2}\)x2y2.(2x+y)(2x-y)
= \(\dfrac{1}{2}\)x2y2.(4x2-2xy+2xy-y2)
= \(\dfrac{1}{2}\)x2y2.(4x2-y2)
= 2x4y2-\(\dfrac{1}{2}\)x2y4
9) (x-\(\dfrac{1}{2}\)).(x+\(\dfrac{1}{2}\)).(4x-1)
= x2.(4x-1)
= 4x3-x2
10)\(\dfrac{3x}{2x+6}\)+\(\dfrac{6-x}{2x^2+6x}\)
= \(\dfrac{3x}{2\left(x+3\right)}\)+\(\dfrac{6-x}{2x\left(x+3\right)}\)= \(\dfrac{3x^2+6-x}{2x\left(x+3\right)}\)=\(\dfrac{3-x}{3}\)= -x
11) x2-\(\dfrac{1}{2x-2}\)+3x+\(\dfrac{3}{1-x^2}\)
12)\(\dfrac{x^2}{x^2-y^2}\)-\(\dfrac{x-y}{x^2-y^2}\)
= \(\dfrac{x^2-xy}{\left(x-y\right)\left(x+y\right)}\)=\(\dfrac{x\left(x-y\right)}{\left(x-y\right)\left(x+y\right)}\)= \(\dfrac{x}{x+y}\)
a) \(a^2x+a^2y-9x-9y\)
\(=\left(a^2x+a^2y\right)-\left(9x+9y\right)\)
\(=a^2\left(x+y\right)-9\left(x+y\right)\)
\(=\left(x+y\right)\left(a^2-9\right)\)
\(=\left(x+y\right)\left(a-3\right)\left(a+3\right)\)
b) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
c) \(x^2\left(x-3\right)+12-4x\)
\(=x^2\left(x-3\right)-\left(4x-12\right)\)
\(=x^2\left(x-3\right)-4\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-4\right)\)
\(=\left(x-3\right)\left(x-2\right)\left(x+2\right)\)
d) \(4x\left(x-y\right)+6y\left(x-y\right)\)
\(=\left(x-y\right)\left(4x+6y\right)\)
\(=2\left(x-y\right)\left(2x+3y\right)\)
e) \(5\left(x+y\right)-xy-y^2\)
\(=5\left(x+y\right)-\left(xy+y^2\right)\)
\(=5\left(x+y\right)-y\left(x+y\right)\)
\(=\left(x+y\right)\left(5-y\right)\)
a) \(x^2-y^2-5x-5y\)
\(=\left(x^2-y^2\right)-\left(5x+5y\right)\)
\(=\left(x-y\right)\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(x-y-5\right)\)
b) \(5x^3-5x^2y-10x^2+10xy\)
\(=\left(5x^3-5x^2y\right)-\left(10x^2-10xy\right)\)
\(=5x^2\left(x-y\right)-10x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x^2-10x\right)\)
\(=5x\left(x-y\right)\left(x-2\right)\)
c) \(x^3-2x^2-x+2\)
\(=\left(x^3-2x^2\right)-\left(x-2\right)\)
\(=x^2\left(x-2\right)-\left(x-2\right)\)
\(=\left(x-2\right)\left(x^2-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\left(x+1\right)\)
d) \(-y^2+2xy-x^2+3x-3y\)
\(=-\left(y^2-2xy+x^2\right)+\left(3x-3y\right)\)
\(=-\left(y-x\right)^2+3\left(x-y\right)\)
\(=-\left(x-y\right)^2+3\left(x-y\right)\)
\(=\left(x-y\right)\left[-\left(x-y\right)+3\right]\)
\(=\left(x-y\right)\left(-x+y+3\right)\)
g) \(4x^2-8x+3\)
\(=4x^2-6x-2x+3\)
\(=\left(4x^2-6x\right)-\left(2x-3\right)\)
\(=2x\left(2x-3\right)-\left(2x-3\right)\)
\(=\left(2x-3\right)\left(2x-1\right)\)
h) \(2x^2-5x-7\)
\(=2x^2+2x-7x-7\)
\(=\left(2x^2+2x\right)-\left(7x+7\right)\)
\(=2x\left(x+1\right)-7\left(x+1\right)\)
\(=\left(x+1\right)\left(2x-7\right)\)
k) \(x^4+4\)
\(=x^4+4x^2+4-4x^2\)
\(=\left[\left(x^2\right)^2+2.x^2.2+2^2\right]-4x^2\)
\(=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
Bài 1:
a)\(5x^2y^3-25x^3y^4+10x^3y^3=5x^2y^3\left(1-5xy+2x\right)\)
b)\(x^3-2xy-x^2y+2y^2=\left(x^3-x^2y\right)-\left(2xy-2y^2\right)=x^2\left(x-y\right)-2y\left(x-y\right)=\left(x-y\right)\left(x^2-2y\right)\)
c)Đề sai hoàn toàn
d) \(2x^2+4xy+2y^2-8z^2=2\left(x^2+2xy+y^2-4z^2\right)=2\left[\left(x+y\right)^2-\left(2z\right)^2\right]=2\left(x+y-2z\right)\left(x+y+2z\right)\)e) \(3x-3a+yx-ya=3\left(x-a\right)+y\left(x-a\right)=\left(x-a\right)\left(3+y\right)\)
f)\(\left(x^2+y^2\right)^2-4x^2y^2=\left(x-y\right)^2\left(x+y\right)^2\)
g)\(2x^2-5x+2=2x^2-x-4x+2=x\left(2x-1\right)-2\left(2x-1\right)=\left(2x-1\right)\left(x-2\right)\)
i)\(14x\left(x-y\right)-21y\left(y-x\right)+28z\left(x-y\right)=14x\left(x-y\right)+21y\left(x-y\right)+28z\left(x-y\right)=7\left(x-y\right)\left(2x+3y+4z\right)\)
1: \(x^4-4+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
4: \(-6x^3+18x^2+60x\)
\(=-6x\left(x^2-3x-10\right)\)
\(=-6x\left(x-5\right)\left(x+2\right)\)
6: \(x^4+x^3-5x^2-5x\)
\(=x\left(x^3+x^2-5x-5\right)\)
\(=x\left(x+1\right)\left(x^2-5\right)\)
1) x(x - y) + x - y
= x.(x - y) + (x - y)
= (x - y).(x + 1)
2) Câu b sai đề nên mk sửa lại nha
2x3 + x2 - 8x - 4
= (2x3 + x2) - (8x + 4)
= x2.(2x + 1) - 4.(2x + 1)
= (2x + 1).(x2 - 4)
= (2x + 1).(x - 2).(x + 2)
3) 2x2 - 8xy - 5x + 20y
= (2x2 - 5x) - (8xy - 20y)
= x.(2x - 5) - 4y.(2x - 5)
= (2x - 5).(x - 4y)
1) ( x+1) ( x-y)
2) 2x3 + x2 - 8x - 4= 2x3 - 4x2 + 5x2 - 10x + 2x - 4 = 2x2 ( x-2) + 5x( x -2) + 2(x -2)
=( 2x2 + 5x + 2)( x-2)
=( 2x2 + 4x + x + 2)( x-2)
=[ 2x( x+2) + ( x-2)]( x-2)
= ( 2x +1)( x+2)( x-2)
3) 2x2 - 8xy - 5x + 20y
= 2x ( x - 4y) - 5( x-4y)= ( 2x-5)(x-4y)
1) x³ + 2x² + x
= x(x² + 2x + 1)
= x(x + 1)²
2) 5x³ - 10x² + 5x
= 5x(x² - 2x + 1)
= 5x(x - 1)²
3) 8x²y - 8xy + 2x
= 2x(4xy - 4y + 1)
5) 2x² + 5x³ + x²y
= x²(2 + 5x + y)
6) 4x²y - 8xy² + 18x²y²
= 2xy(2x - 4y + 9xy)
Chúc Bạn Học Tốt !