Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(3^2.\frac{1}{243}.81^3.\frac{1}{33}\)
\(=\frac{3^2}{243}.\frac{81^3}{33}\)
\(=\frac{3^2}{3^5}.\frac{3^{12}}{3.11}\)
\(=\frac{1}{3^3}.\frac{3^{11}}{11}\)
\(=\frac{3^8}{11}.\)
b) \(42^5:\left(2^3.\frac{1}{16}\right)\)
\(=42^5:\frac{2^3}{16}\)
\(=42^5:\frac{2^3}{2^4}\)
\(=42^5:\frac{1}{2}\)
\(=42^5.2\)
\(=21^5.2^5.2\)
\(=21^5.2^6.\)
c) \(12^5.\frac{12^2}{9^3.4^5}\)
\(=\frac{12^7}{9^3.4^5}\)
\(=\frac{3^7.4^7}{3^6.4^5}\)
\(=3.4^2\)
\(=48.\)
d) \(\frac{2^5+2^6+2^7}{2^7+2^8+2^9}\)
\(=\frac{2^5\left(1+2+2^2\right)}{2^7\left(1+2+2^2\right)}\)
\(=\frac{2^5}{2^7}\)
\(=\frac{1}{4}.\)
1.a) \(\left(\frac{3}{5}\right)^{15}:\left(\frac{9}{25}\right)^5=\frac{3^{15}}{5^{15}}.\frac{5^{10}}{3^{10}}=\frac{3^5}{5^5}=\left(\frac{3}{5}\right)^5\)
b)\(\left(\frac{2}{3}\right)^{10}:\left(\frac{4}{9}\right)^4=\frac{2^{10}}{3^{10}}.\frac{3^8}{2^8}=\frac{2^2}{3^2}=\left(\frac{2}{3}\right)^2\)
2.
a)\(2^x=4\Rightarrow2^x=2^2\Rightarrow x=2\)
b)\(x^3=-27\Rightarrow x^3=-3^3\Rightarrow x=-3\)
c)\(x^2=16\Rightarrow x=\pm4\)
d)\(\left(x+1\right)^2=9\Rightarrow\hept{\begin{cases}x+1=3\Rightarrow x=2\\x+1=-3\Rightarrow x=-4\end{cases}}\)
Căng, sự thật là nó rất căng
Nhg dù sao thì.....
1) \(A\left(x\right)=\left(x-4\right)^2-\left(2x+1\right)^2\)
Xét \(A\left(x\right)=0\)
\(\Rightarrow\left(x-4\right)^2-\left(2x+1\right)^2=0\)
\(\Rightarrow x^2-8x+16-4x^2-4x-1=0\)
\(\Rightarrow-3x^2-12x+15=0\)
\(\Rightarrow-3x^2+3x-15x+15=0\)
\(\Rightarrow-3x\left(x-1\right)-15\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(-3x-15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\-3x-15=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-5\end{matrix}\right.\)
2)(Sửa đề nha, sai cmnr) \(B\left(x\right)=x^3+x^2-4x-4\)
Xét \(B\left(x\right)=0\)
\(\Rightarrow x^3+x^2-4x-4=0\)
\(\Rightarrow x^2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Rightarrow\left(x^2-4\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2-4=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\pm2\\x=-1\end{matrix}\right.\)
Đó là những j mình biết
a, x:(1/2)3=-1/2
x:1/8= -1/2
x= -1/2.1/8
x=-1/16
b,(3/4)5.x=(3/4)7
x=(3/4)7:(3/4)5
x= (3/4)2
c,(2/5)^8:x=(2/5)^6
x=.......
như cái trên nha lm giống thế
a) Ta có \(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot\left(4^2-2^4\right)\)
=\(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot\left(16-16\right)\)
=\(\left(2^{17}+17^2\right)\cdot\left(9^{15}-15^9\right)\cdot0\)=0
b) \(\left(7^{1997}-7^{1995}\right):\left(7^{1994}\cdot7\right)\)
=\(\left(7^{1995}\left(7^2-1\right)\right):7^{1995}\)
=\(7^2-1\)=\(49-1\)=\(48\)
c Giống câu a
Bài 1:
a)
\(\dfrac{4^2\cdot25^2+32\cdot125}{2^3\cdot5^2}\\ =\dfrac{\left(2^2\right)^2\cdot\left(5^2\right)^2+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^{2\cdot2}\cdot5^{2\cdot2}+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4+2^5\cdot5^3}{2^3\cdot5^2}\\ =\dfrac{2^4\cdot5^4}{2^3\cdot5^2}+\dfrac{2^5\cdot5^3}{2^3\cdot5^2}\\ =2\cdot5^2+2^2\cdot5\\ =2\cdot25+4\cdot5\\ =50+20\\ =70\)
c)
\(\dfrac{\left(1-\dfrac{4}{9}-2\right)\cdot16}{\left(2-3\right)^{-2}}+12\\ =\dfrac{\left(\dfrac{9}{9}-\dfrac{4}{9}-\dfrac{18}{9}\right)\cdot16}{\left(-1\right)^{-2}}+12\\ =\dfrac{\dfrac{-13}{9}\cdot16}{\dfrac{1}{\left(-1\right)^2}}+12\\ =\dfrac{\dfrac{-208}{9}}{1}+12\\ =\dfrac{-208}{9}+12\\ =\dfrac{-208}{9}+\dfrac{108}{9}\\ =\dfrac{100}{9}\)
Bài 2:
a)
\(\left(x+2\right)^2=36\\ \Rightarrow\left[{}\begin{matrix}x+2=6\\x+2=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=4\\x=-8\end{matrix}\right.\)
b)
\(\left(1,78^{2x-2}-1,78^x\right):1,78^x=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-\dfrac{1,78^x}{1,78^x}=0\\ \Leftrightarrow\dfrac{1,78^{2x-2}}{1,78^x}-1=0\\ \Leftrightarrow \dfrac{1,78^{2x-2}}{1,78^x}=1\\ \Leftrightarrow1,78^{2x-2}=1,78^x\\ \Leftrightarrow2x-2=x\\ \Leftrightarrow2x-x=2\\ \Leftrightarrow x=2\)
d) \(5^{\left(x-2\right)\left(x+3\right)}=1\)
\(\Rightarrow5^{\left(x-2\right)\left(x+3\right)}=5^0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)
Vậy \(x_1=-3;x_2=2\)
\(b)2^3\cdot\frac{1}{8}\cdot\frac{1}{4}\cdot2^4\)
\(=8\cdot\frac{1}{8}\cdot\frac{1}{4}\cdot16\)
\(=1\cdot4=4\)
Câu a thắc mắc dùm chút: ) bạn ghi sai đề ???