K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2020

5. \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

\(\Leftrightarrow\left(x-7\right)^{x+1}\left[1-\left(x-7\right)^{x+10}\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-7\right)^{x+1}=0\\1-\left(x-7\right)^{x+10}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\\left(x-7\right)^{x+10}=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=8\end{matrix}\right.\)

Vậy ...

4/ Ta có :

\(3^{n+2}-2^{n+2}+3^n-2^n=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10\left(3^n-2^{n-1}\right)⋮10\left(đpcm\right)\)

3/ Ta có :

\(A=1+5+5^2+......+5^{49}+5^{50}\)

\(\Leftrightarrow5A=5+5^2+5^3+.......+5^{50}+5^{51}\)

\(\Leftrightarrow5A-A=\left(5+5^2+.........+5^{51}\right)-\left(1+5+5^2+....+5^{50}\right)\)

\(\Leftrightarrow4A=5^{51}-1\)

\(\Leftrightarrow A=\frac{5^{51}-1}{4}\)

Vậy..

6 tháng 1 2020

2.

\(7^6+7^5-7^4\)

\(=7^4.\left(7^2+7-1\right)\)

\(=7^4.\left(49+7-1\right)\)

\(=7^4.55\)

\(55⋮55.\)

\(\Rightarrow7^4.55⋮55\)

\(\Rightarrow7^6+7^5-7^4⋮55\left(đpcm\right).\)

4.

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)chia hết cho 10.Bài 2. Tìm x biếta) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa...
Đọc tiếp

Bài 1. Chứng minh rằng với mọi số nguyên dương n thì \(3^{n+2}-2^{n+2}+3^n-2^n.\)

chia hết cho 10.

Bài 2. Tìm x biết

a) \(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left|\left(-3,2\right)+\frac{2}{5}\right|\)

b) \(\left(x-7\right)^{x+1}-\left(x-7\right)^{x+11}=0\)

Bài 3. Số A chia thành ba số theo tỉ lệ \(\frac{2}{5}:\frac{3}{4}:\frac{1}{6}\)

Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A (Chú ý: số A chia thành 3 số nghĩa là 3 số được chia cộng lại bằng A).

Bài 4. Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của MA lấy E sao cho ME=MA. Chứng minh rằng:

a) AC=EB và AC song song với EB

b) Gọi I là điểm trên AC, K là một điểm trên EB sao cho AI=EK. Chứng minh I, M, K thẳng hàng.

c) Từ E kẻ EH vuông góc với BC (H thuộc BC). Biết góc HBE = 50 độ, góc MEB = 25 độ. Tính góc HEM, góc BME.

5
29 tháng 9 2016

\(\text{Bn hỏi từ từ từng câu 1 thôi}\)

\(\text{Bn hỏi thế ai mà dám làm}\)

~~~~~~~~~~~~~

~~~~~~~~~~~

~~~~~~~~~~~~

29 tháng 9 2016

Chí lí 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

avt755982_60by60.jpg sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````

5 tháng 1 2020

Bài 1:

Ta có:

\(3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}\)

\(=\left(3^{x+1}+3^{x+2}+3^{x+3}+3^{x+4}\right)+...+\left(3^{x+97}+3^{x+98}+3^{x+99}+3^{x+100}\right)\)

\(=3^x.\left(3+3^2+3^3+3^4\right)+...+3^{x+96}.\left(3+3^2+3^3+3^4\right)\)

\(=3^x.120+3^{x+4}.120+...+3^{x+96}.120\)

\(=120.\left(3^x+3^{x+4}+...+3^{x+96}\right)\)

\(120⋮120.\)

\(\Rightarrow120.\left(3^x+3^{x+4}+...+3^{x+96}\right)⋮120\)

\(\Rightarrow3^{x+1}+3^{x+2}+3^{x+3}+...+3^{x+100}⋮120\left(\forall x\in N\right)\left(đpcm\right).\)

Chúc bạn học tốt!

5 tháng 1 2020

Bài 2:

\(f\left(x_1.x_2\right)=f\left(x_1\right).f\left(x_2\right)\)

\(\Rightarrow f\left(4\right)=f\left(2.2\right)=f\left(2\right).f\left(2\right)=10.10=100\)

\(\Rightarrow f\left(16\right)=f\left(4.4\right)=f\left(4\right).f\left(4\right)=100.100=10000.\)

\(\Rightarrow f\left(32\right)=f\left(16.2\right)=f\left(16\right).f\left(2\right)=10000.10=100000.\)

Vậy \(f\left(32\right)=100000.\)

Chúc bạn học tốt!

8 tháng 11 2016

 Bài 4:

x O y z m n

Giải:
Vì Om là tia phân giác của góc xOz nên:

mOz = 1/2.xOz

Vì On là tia phân giác của góc zOy nên:
zOn = 1/2 . zOy

Ta có: xOz + zOy = 180o ( kề bù )

=> 1/2(xOz + zOy) = 1/2 . 180o

=> 1/2.xOz + 1/2.zOy = 90o

=> mOz + zOn = 90o

=> mOn = 90o   (đpcm)

8 tháng 11 2016

Bài 2:
7^6 + 7^5 - 7^4 = 7^4.( 7^2 + 7 - 1 ) = 7^4 . 55 chia hết cho 55

Vậy 7^6 + 7^5 - 7^4 chia hết cho 55

A = 1 + 5 + 5^2 + ... + 5^50

=> 5A = 5 + 5^2 + 5^3 + ... + 5^51

=> 5A - A = ( 5 + 5^2 + 5^3 + ... + 5^51 ) - ( 1 + 5 + 5^2 + ... + 5^50 )

=> 4A = 5^51 - 1

=> A = ( 5^51 - 1 )/4

5 tháng 1 2020

2.

\(3xy+x-y=1\)

\(\Rightarrow9xy+3x-3y=3\)

\(\Rightarrow\left(9xy+3x\right)-3y-1=3-1\)

\(\Rightarrow\left(9xy+3x\right)-\left(3y+1\right)=2\)

\(\Rightarrow3x.\left(3y+1\right)-\left(3y+1\right)=2\)

\(\Rightarrow\left(3y+1\right).\left(3x-1\right)=2\)

\(x,y\in Z\Rightarrow\left\{{}\begin{matrix}3y+1\in Z\\3x-1\in Z\end{matrix}\right.\)

\(\Rightarrow3y+1\inƯC\left(2\right);3x-1\inƯC\left(2\right)\)

\(\Rightarrow3y+1\in\left\{1;2;-1;-2\right\};3x-1\in\left\{1;2;-1;-2\right\}.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3y+1=1\\3x-1=2\end{matrix}\right.\\\left\{{}\begin{matrix}3y+1=2\\3x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}3y+1=-1\\3x-1=-2\end{matrix}\right.\\\left\{{}\begin{matrix}3y+1=-2\\3x-1=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}3y=0\\3x=3\end{matrix}\right.\\\left\{{}\begin{matrix}3y=1\\3x=2\end{matrix}\right.\\\left\{{}\begin{matrix}3y=-2\\3x=-1\end{matrix}\right.\\\left\{{}\begin{matrix}3y=-3\\3x=0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=1\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=\frac{1}{3}\\x=\frac{2}{3}\end{matrix}\right.\left(KTM\right)\\\left\{{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{3}\end{matrix}\right.\left(KTM\right)\\\left\{{}\begin{matrix}y=-1\\x=0\end{matrix}\right.\left(TM\right)\end{matrix}\right.\)

Vậy cặp số nguyên \(\left(x;y\right)\) thỏa mãn đề bài là: \(\left(1;0\right),\left(0;-1\right).\)

Chúc bạn học tốt!

5 tháng 1 2020

3. Giải

(n + 5)(n + 6):6n =\(\frac{1}{6}\) (n + 11 +\(\frac{30}{n}\) )

Để chia hết thì n là ước của 30 và n + 11 +\(\frac{30}{n}\) chia hết cho 6

Vậy: n = 1; 3; 10; 30

Chúc bạn học có hiệu quả!

11 tháng 2 2019

a, \(A=\frac{2^{12}\cdot3^5-4^6\cdot9^2}{(2^2\cdot3)^6+8^4\cdot3^5}-\frac{5^{10}\cdot7^3-25^5\cdot49^2}{(125\cdot7)^3+5^9\cdot14^3}\)

\(A=\frac{2^{12}\cdot3^5-2^{12}\cdot3^4}{2^{12}\cdot3^6+2^{12}\cdot3^5}-\frac{5^{10}\cdot7^3-5^{10}\cdot7^4}{5^9\cdot7^3+5^9\cdot2^3\cdot7^3}\)

\(A=\frac{2^{12}\cdot3^4(3-1)}{2^{12}\cdot3^5(3+1)}-\frac{5^{10}\cdot7^3(1-7)}{5^9\cdot7^3(1+2^3)}\)

\(A=\frac{2^{12}\cdot3^4\cdot2}{2^{12}\cdot3^5\cdot4}-\frac{5^{10}\cdot7^3\cdot(-6)}{5^9\cdot7^3\cdot9}=\frac{1}{6}-\frac{-10}{3}=\frac{7}{2}\)

11 tháng 2 2019

b,\(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=(3^{n+2}+3^n)-(2^{n+2}-2^n)\)

\(=(3^n\cdot3^2+3^n)-(2^n\cdot2^2-2^n)\)

\(=3^n\cdot(3^2+1)-2^n\cdot(2^2+1)\)

\(=3^n\cdot9+1-2^n\cdot4+1\)

\(=3^n\cdot10-2^n\cdot5\)

Vì \(2\cdot5⋮10\Rightarrow2^n\cdot5⋮10\)

\(3^n\cdot10⋮10\)

Vậy : ....

9 tháng 12 2017

Click để xem thêm, còn nhiều lắm!

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0