Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x+\dfrac{1}{2}\right|+\left|x-y+z\right|+\left|y+\dfrac{1}{3}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{2}=0\\y+\dfrac{1}{3}=0\\x-y+z=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x=-\dfrac{1}{2}\\y=-\dfrac{1}{3}\\z=-x+y=\dfrac{1}{2}-\dfrac{1}{3}=\dfrac{1}{6}\end{matrix}\right.\)
\(A=2x+y+z=-1-\dfrac{1}{3}+\dfrac{1}{6}=-\dfrac{4}{3}+\dfrac{1}{6}=-\dfrac{7}{6}\)
Nguyễn Thanh Hằng Nhã Doanh ngonhuminh nguyen thi vang mấy ban giup mk voi
2) \(\dfrac{x}{y}=\left(\dfrac{x}{y}\right)^2\)
\(\Rightarrow\left(\dfrac{x}{y}\right)^2-\dfrac{x}{y}=0\)
\(\Rightarrow\dfrac{x}{y}\left(\dfrac{x}{y}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{y}=0\Rightarrow x=0;y\in R\\\dfrac{x}{y}-1=0\Rightarrow\dfrac{x}{y}=1\Rightarrow x=y\end{matrix}\right.\)
3) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}.2^5+2^{15}.1=2^{15}.33⋮33\rightarrowđpcm\)
4)\(\left(x-3\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)
\(\left(x-12+y\right)^{200}+\left(x-4-y\right)^{200}=0\)
\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\\\left(x-4-y\right)^{200}\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-12+y\right)^{200}+\left(x-y-4\right)^{200}\ge0\)
Dấu "=" xảy ra khi:
\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-y-4\right)^{200}=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x-12+y=0\Rightarrow x+y=12\\x-y-4=0\Rightarrow x-y=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)+\left(x-y\right)=12+4\Rightarrow x+y+x-y=16\Rightarrow2x=16\Rightarrow x=8\\y=8-4=4\end{matrix}\right.\)
a: =>\(-\dfrac{6+x}{2}-\dfrac{3}{2}=2\)
=>-x-6-3=4
=>-x-9=4
=>-x=5
hay x=-5
b: =>(x+1)2=16
=>x+1=4 hoặc x+1=-4
=>x=3 hoặc x=-5
c: \(\Leftrightarrow\left(\dfrac{x-2}{27}-1\right)+\left(\dfrac{x-3}{26}-1\right)+\left(\dfrac{x-4}{25}-1\right)+\left(\dfrac{x-5}{24}-1\right)+\left(\dfrac{x-44}{5}+3\right)=0\)
=>x-29=0
hay x=29
Ta có:\(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}=\dfrac{y+z+1+x+z+2+x+y-3}{x+y+z}=\dfrac{2\left(x+y+x\right)}{x+y+z}=2\)(theo tính chất của DTSBN)
Suy ra:\(\dfrac{1}{x+y+z}=2\)=>x+y+z=\(\dfrac{1}{2}\)
=>y+z=\(\dfrac{1}{2}\)-x
Tương tự, ta có được:
x+z=\(\dfrac{1}{2}-y\)
x+y=\(\dfrac{1}{2}-z\)
Thay các kết quả vừa tìm được, ta có:
\(\dfrac{0,5-x+1}{x}=\dfrac{0,5-y+2}{y}\dfrac{0,5-z-3}{z}=2\)=>\(\dfrac{1,5-x}{x}=\dfrac{2,5-y}{y}=\dfrac{-2,5-z}{z}=2\)
=>x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)
Thay x=\(\dfrac{1}{2},y=\dfrac{5}{6},z=\dfrac{-5}{6}\)vào biểu thức A, ta có:
A=2018.\(\dfrac{1}{2}\)+\(\left(\dfrac{5}{6}\right)^{2017}\)+\(\left(\dfrac{-5}{6}\right)^{2017}\)
=>A=1009+\(\left[\left(\dfrac{5}{6}\right)^{2017}+\left(\dfrac{-5}{6}\right)^{2017}\right]\)
=>A=1009+0
=>A=1009
Vậy giá trị của biểu thức A là 1009
Bài giải
b, \(x-5+\left|x-3\right|=4\)
\(\left|x-3\right|=4-x+5\)
\(\Rightarrow\orbr{\begin{cases}x-3=-4+x-5\\x-3=4-x+5\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x-x=-4-5+3\\x+x=4+5+3\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x\ne-6\text{ ( loại ) }\\2x=12\end{cases}}\)\(\Rightarrow\text{ }x=6\)
c, \(\sqrt{\left(x+7\right)^2}+\left(x^2-49\right)^{2012}=0\)
\(\left(x+7\right)+\left(x^2-49\right)^{2012}=0\)
\(\Rightarrow\hept{\begin{cases}x+7=0\\\left(x^2-49\right)^{2012}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2-49=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x^2=49\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=-7\\x=\pm7\end{cases}}\)
\(\)\(\Rightarrow\text{ }x=-7\)
d, \(2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}\le0\)
\(\text{Vì }\hept{\begin{cases}2\left|3-x\right|^{2017}\ge0\\\left(y-x+1\right)^{2016}\ge0\end{cases}}\) \(\Rightarrow\text{ Chỉ xảy ra trường hợp }2\left|3-x\right|^{2017}+\left(y-x+1\right)^{2016}=0\)
\(\Rightarrow\hept{\begin{cases}2\left|3-x\right|^{2017}=0\\\left(y-x+1\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\left|3-x\right|^{2017}=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3-x=0\\y-x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y-3+1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=3\\y-2=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
1: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^6\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{18}\)
=>4x=18
hay x=9/2
2: \(\left(\dfrac{1}{16}\right)^x=\left(\dfrac{1}{8}\right)^{36}\)
\(\Leftrightarrow\left(\dfrac{1}{2}\right)^{4x}=\left(\dfrac{1}{2}\right)^{108}\)
=>4x=108
hay x=27
3: \(\left(\dfrac{1}{81}\right)^x=\left(\dfrac{1}{27}\right)^4\)
\(\Leftrightarrow\left(\dfrac{1}{3}\right)^{4x}=\left(\dfrac{1}{3}\right)^{12}\)
=>4x=12
hay x=3
a) \(\dfrac{2}{3}x.\left(x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{2}{3}x=0\\x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=8\end{matrix}\right.\)
Vậy x=0 ; x=8
nên x=0 hoặc x-8=0
x-8=0
x=8
vậy x thuộc 0 và 8