Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\left(x^2-x+1\right).\left(x+1\right)-x^3+3x=15\)
\(x^3+x^2-x^2-x+x+1-x^3+3x=15\)
\(1+3x=15\)
\(3x=15-1\)
\(3x=14\)
\(x=\frac{14}{3}\)
b) \(\left(x+3\right).\left(x-2\right)+3x=4\left(x+\frac{3}{4}\right)\)
\(x^2-2x+3x-6+3x=4x+3\)
\(x^2-2x+3x+3x-4x=6+3\)
\(x^2=9\)
\(x^2=3^2\) hoặc \(x^2=\left(-3\right)^2\)
vậy x=3 hoặc x=-3
Chúng ta sẽ sử dụng hằng đẳng thức em nhé :)
a. \(x^3+1-x^3+3x=15\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)
b. \(x^2+x-6+3x=4x+3\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
c. \(x^3+2x^2-5x-10+5x=2x^2+17\Leftrightarrow x^3=27\Leftrightarrow x=3\)
a,
(x2-x+1)(x+1)-x3+3x=15
x3-x2+x+x2-x+1-x3+3x=15
x3-x3-x2+x2+x-x+3x+1=15
3x+1=15
3x=15-1
3x=14
x=14/3
b,
(x+3)(x-2)+3x=\(\frac{4}{x+\frac{3}{4}}\)
x2-2x+3x-6+3x=\(\frac{4}{x+\frac{3}{4}}\)
x2-2x+3x+3x-6=\(\frac{4}{x+\frac{3}{4}}\)
Tới đây hết biết , đề có gì sai sai sao ý !
c,
(x2-5)(x+2)+5x=2x2+17
x3+2x2-5x-10+5x=2x2+17
x3+2x2-5x+5x-10=2x2+17
x3+2x2-10=2x2+17
x3-10=17
x3=17+10
x3=27
\(\Rightarrow x=3\)(Vì : 33=27)
_k_ nhé bn
Nhân ra thôi bạn, có hằng đẳng thức gì đâu !
a) \(\left(x^2-x+1\right)\left(x+1\right)-x^3+3x=15\)
\(\Leftrightarrow\left(x^2-x+1\right)\cdot x+x^2-x+1-x^3+3x=15\)
\(\Leftrightarrow x^3-x^2+x+x^2-x+1-x^3+3x=15\)
\(\Leftrightarrow1+3x=15\Leftrightarrow3x=14\Leftrightarrow x=\frac{14}{3}\)
b) \(\left(x+3\right)\left(x-2\right)+3x=4\cdot\left(x+\frac{3}{4}\right)\)
\(\Leftrightarrow x^2+3x-2x-6+3x=4x+3\)
\(\Leftrightarrow x^2+4x-6=4x+3\)
\(\Leftrightarrow x^2=9\Leftrightarrow\orbr{\begin{cases}x=-3\\x=3\end{cases}}\)
c) \(\left(x^2-5\right)\left(x+2\right)+5x=2x^2+17\)
\(\Leftrightarrow x^3-5x+2x^2-10+5x=2x^2+17\)
\(\Leftrightarrow x^3=27\Leftrightarrow x=3\)
a) (3x2 - 5x + 2 ) . ( 1phần 5x - 3 )
=3/5x3-10x2+77/5x-6
b)( x^3 - 2x + 4 - x^4 ) . ( 1 - x^2 + 2x )
=x6-2x5+x4+3x3-8x2+6x+4
a) \(A=5x\left(4x^2-2x+1\right)-2x\left(10x^2-5x-2\right)\)
\(A=20x^3-10x^2+5x-20x^3+10x^2+4x\)
\(A=9x\)
Thay x = 15 vào, ta có:
\(A=9.15=135\)
b) \(B=5x\left(x-4y\right)-4y\left(y-5x\right)\)
\(B=5x^2-20xy-4y^2+20xy\)
\(B=5x^2-4y\)
Thay \(x=-\frac{1}{5};y=-\frac{1}{2}\) vào, ta có:
\(B=5.\left(-\frac{1}{5}\right)^2-4.\left(-\frac{1}{2}\right)=\frac{11}{5}\)
c) \(C=6xy\left(xy-y^2\right)-8x^2\left(x-y^2\right)-5y^2\left(x^2-xy\right)\)
\(C=6x^2y^2-6xy^3-8x^3+8x^2y^2-5x^2y^2+5xy^3\)
\(C=9x^2y^2-xy^3-8x^3\)
Thay \(x=\frac{1}{2};y=2\) vào, ta có:
\(C=9.\left(\frac{1}{2}\right)^2.2^2-\frac{1}{2}.2^3-8.\left(\frac{1}{2}\right)^3=4\)
d) \(D=\left(3x+5\right)\left(2x-1\right)+\left(4x-1\right)\left(3x+2\right)\)
\(D=6x^2-3x+10x-5+12x^2+8x-3x-2\)
\(D=18x^2+12x-7\)
Ta có: \(\left|2\right|=\orbr{\begin{cases}x=-2\\x=2\end{cases}}\)
+) Với x = -2
\(D=18.\left(-2\right)^2+12.\left(-2\right)-7=41\)
+) Với x = 2
\(D=18.2^2+12.2-7=89\)
Bài 1.
1) ( 2x + 1 )3 - ( 2x + 1 )( 4x2 - 2x + 1 ) - 3( 2x - 1 ) = 15
<=> 8x3 + 12x2 + 6x + 1 - [ ( 2x )3 - 13 ] - 6x + 3 = 15
<=> 8x3 + 12x2 + 4 - 8x3 + 1 = 15
<=> 12x2 + 15 = 15
<=> 12x2 = 0
<=> x = 0
2) x( x - 4 )( x + 4 ) - ( x - 5 )( x2 + 5x + 25 ) = 13
<=> x( x2 - 16 ) - ( x3 - 53 ) = 13
<=> x3 - 16x - x3 + 125 = 13
<=> 125 - 16x = 13
<=> 16x = 112
<=> x = 7
Bài 2.
A = ( x + 5 )( x2 - 5x + 25 ) - ( 2x + 1 )3 - 28x3 + 3x( -11x + 5 )
= x3 + 53 - ( 8x3 + 12x2 + 6x + 1 ) - 28x3 - 33x2 + 15x
= -27x3 + 125 - 8x3 - 12x2 - 6x - 1 - 33x2 + 15x
= -33x3 - 45x2 + 9x + 124 ( có phụ thuộc vào biến )
B = ( 3x + 2 )3 - 18x( 3x + 2 ) + ( x - 1 )3 - 28x3 + 3x( x - 1 )
= 27x3 + 54x2 + 36x + 8 - 54x2 - 36x + x3 - 3x2 + 3x - 1 - 28x3 + 3x2 - 3x
= 7 ( đpcm )
C = ( 4x - 1 )( 16x2 + 4x + 1 ) - ( 4x + 1 )3 + 12( 4x + 1 )3 + 12( 4x + 1 ) - 15
= ( 4x )3 - 13 - [ ( 4x + 1 )3 - 12( 4x + 1 )3 - 12( 4x + 1 ) ] - 15
= 64x3 - 1 - ( 4x + 1 )[ ( 4x + 1 )2 - 12( 4x + 1 )2 - 12 ] - 15
= 64x3 - 16 - ( 4x + 1 )[ 16x2 + 8x + 1 - 12( 16x2 + 8x + 1 ) - 12 ]
= 64x3 - 16 - ( 4x + 1 )( 16x2 + 8x - 11 - 192x2 - 96x - 12 )
= 64x3 - 16 - ( 4x + 1 )( -176x2 - 88x - 23 )
= 64x3 - 16 - ( -704x3 - 528x2 - 180x - 23 )
= 64x3 - 16 + 704x3 + 528x2 + 180x + 23
= 768x3 + 528x2 + 180x + 7 ( có phụ thuộc vào biến )