K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2:

a: 12 chia hết cho n

mà  n là số tự nhiên

nên \(n\in\left\{1;2;3;4;6;12\right\}\)

b: 16 chia hết cho n-1

=>\(n-1\inƯ\left(16\right)\)

mà n-1>=-1(n là số tự nhiên nên n>=0)

nên \(n-1\in\left\{-1;1;2;4;8;16\right\}\)

=>\(n\in\left\{0;2;3;5;9;17\right\}\)

c: 9 chia hết cho n+1

=>\(n+1\inƯ\left(9\right)\)

mà n+1>=1(n>=0 do n là số tự nhiên)

nên \(n+1\in\left\{1;3;9\right\}\)

=>\(n\in\left\{0;2;8\right\}\)

17 tháng 8 2023

cảm ơn ạ. còn câu 1 thì sao ạ !?

26 tháng 3 2024
Dudijdiddidijdjdjdjdj
26 tháng 3 2024

7 tháng 12 2017

98/25

7 tháng 12 2017

Tập hợp H có số phần tử là : 

  ( 215 - 21 ) : 2 + 1 = 98 

Vậy tập hợp H có 98 phần tử

20 tháng 10 2017

1. Vì 18 chia hết cho n => n thuộc Ư(18)={1,2,3,6,9,18)

=> Tổng các Ư(18) = 1 + 2 +3 + 6 + 9 + 18 = 33

2.a) 12 chia hết cho n+3 => n + 3 thuộc Ư(12) = {1;2;3;4;6;12}

Với n + 3 = 1 => n = 1 - 3 = -2 (loại vì không thuộc N)

Với n + 3 = 2 => n = 2 - 3 = -1 (loại vì không thuộc N)

Với n + 3 = 3 => n = 3 - 3 = 0

Với n + 3 = 4 => n = 4 - 3 = 1

Với n + 3 = 6 => n = 6 - 3 = 3

Với n + 3 =12 => n = 12 - 3 = 9

Vậy n thuộc {0;1;3;9}

c) Nếu n là số chẵn thì n + 13 là số lẻ, n + 2 là số chắn và ngược lại

Vì SC không chia hết cho SL (và ngược lại) => n + 13 không chia hết cho n + 2 (ngược lại nốt)

Vậy không tồn tại giá trị nào của x (chắc thế)

20 tháng 10 2017


Bài 1 : 
\(18⋮n\Rightarrow n\inƯ\left(18\right)=\left\{1;2;3;6;9;18\right\}\)
bài 2 :

\(a,12⋮n+3\)
\(\Rightarrow n+3\inƯ\left(12\right)=\left\{1;2;3;4;6;12\right\}\)
\(\Rightarrow n=\left\{-2;-1;0;1;3;9\right\}\)mà \(n\in N\)
\(\Rightarrow n=\left\{0;1;3;9\right\}\)
b,c tương tự như vậy nha

24 tháng 11 2016

Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )

a) n+3 : n-2

=> n+3 : n+3-5 

=> n+3 : 5 ( Vì n+3 : n+3 )

=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!

b) 2n+9 : n-3

=> n + n + 11 - 3 : n-3 

=> n + 11 : n-3

=> n + 14 - 3 : n-3

=> 14 : n - 3 ( Vì n - 3 : n-3 )

=> n-3 là Ư(14) => Tự làm tiếp

c) + d) thì bạn tự làm nhé!

-> Chúc bạn học giỏi :))

1 tháng 8 2015

1. Gọi số đó là n. Ta có n-1 chia hết cho 2; 3; 4; 5; 6

Để n nhỏ nhất thì n-1 nhỏ nhất. Vậy ta đi tìm BCNN của các số trên là 60

n-1 chia hết cho 60 hay n-1 = 60k <=> n = 60k + 1 (*)

n chia hết cho 7 => 60k + 1 chia hết cho 7

<=> 60k ≡ -1 (mod 7) <=> 56k + 4k ≡ -1 (mod 7) <=> 4k ≡ -1 (mod 7)

<=> 4k ≡ 6 (mod 7) <=> 2k ≡ 3 (mod 7) <=> 2k ≡ 10 (mod 7) <=> k ≡ 5 (mod 7)

Vậy k nhỏ nhất là 5

Thế vào (*): n = 301 thỏa mãn

2. a) n = 25k - 1 chia hết cho 9

<=> 25k ≡ 1 (mod 9) <=> 27k - 2k ≡ 1 (mod 9) <=> -2k ≡ 1 (mod 9) <=> -2k ≡ 10 (mod 9)

<=> -k ≡ 5 (mod 9) <=> k ≡ 4 (mod 9)

Để n nhỏ nhất thì k nhỏ nhất, vậy k là 4

Thế vào trên được n = 99 thỏa mãn

b) ... -3k ≡ 1 (mod 21) <=> -21k ≡ 7 (mod 21) => Vô lý vì -21k luôn chia hết cho 21

Vậy không có n thỏa mãn

c) Đặt n = 9k

9k ≡ -1 (mod 25) <=> 9k ≡ 24 (mod 25) <=> 3k ≡ 8 (mod 25) <=> 3k ≡ 33 (mod 25)

<=> k ≡ 11 (mod 25) => k = 25a + 11 (1)

9k ≡ -2 (mod 4) <=> 9k ≡ 2 (mod 4) <=> k ≡ 2 (mod 4) => k = 4b + 2 (2)

Từ (1) và (2) => 25a + 11 = 4b + 2 <=> 25a + 9 = 4b => 25a + 9 ≡ 0 (mod 4)

<=> a + 1 ≡ 0 (mod 4) (*)

Lưu ý rằng n tự nhiên nhỏ nhất => k tự nhiên nhỏ nhất => a tự nhiên nhỏ nhất. Vậy a thỏa mãn (*) là a = 3 => n = 774 thỏa mãn

Mình không được dạy dạng toán này nên không biết cách trình bày, cách giải cũng là mình "tự chế" nên nhiều chỗ hơi "lạ" một chút, không biết đúng không nữa :D

13 tháng 10 2015

1. n = 301

2.a) n = 99

b) không có

c) n = 774

11 tháng 10 2020

làm giúp mình nhé