K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: Đenta= (-1)2-4k

Để phương trình có 2 nghiệm phân biệt thì đenta > 0 

<=> 1-4k>0

<=>k<1/4

Theo Vi-et ta có: 

x1+x2=1

x1x2=k

Theo đề bài: x12+x22=3

<=> (x1+x2)2-2x1x2=3

<=> 12-2k=3

<=> -2k=2

<=> k = -1 (thỏa mãn) 

Vậy k=-1 là giá trị cần tìm 

j

2 tháng 5 2021

Em nghĩ đề phải là x1^3 + x2^3 chứ :< 

Để phương trình có 2 nghiệm : \(\Delta\ge0\)

hay \(25-4\left(3m-1\right)=25-12m+4=29-12m\ge0\)

\(\Leftrightarrow-12m\ge-29\Leftrightarrow m\le\frac{29}{12}\)

Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-5\\x_1x_2=\frac{c}{a}=3m-1\end{cases}}\)

mà \(\left(x_1+x_2\right)^2=25\Rightarrow x_1^2+x_2^2=25-2x_1x_2=25-6m+2=27-6m\)

Ta có : \(x_1^3+x_2^3+3x_1x_2=75\Leftrightarrow\left(x_1+x_2\right)\left(x_1^2-x_1x_2+x_2^2\right)+3x_1x_2=75\)

\(\Leftrightarrow-5\left(27-6m-3m+1\right)+3\left(3m-1\right)=75\)

\(\Leftrightarrow-5\left(28-9m\right)+9m-3=75\)

\(\Leftrightarrow-140+45m+9m-3=75\Leftrightarrow m=\frac{109}{27}\)( ktm )

Giải \(\Delta\)

Vì x1,x2 là nghiệm của pt =>\(x_1^2-6x_1+2m-3=0;x_2-6x+2m-3=0\)

Áp dụng định lí vi -ét

\(\hept{\begin{cases}x_1+x_2=6\\x_1.x_2=2m-3\end{cases}}\)

Thay vào ... ta được 

\(\left(0+x_1-1\right).\left(0+x_2-1\right)=2\)

\(=>x_1.x_2-\left(x_1+x_2\right)+1=2\)

\(2m-3-6+1=2=>m=5\)(t/m)

Vậy...

12 tháng 5 2021

wao`

............

............

.............. \(hoangde\)

26 tháng 4 2021

\(x^2-2mx+2m-3=0\)

\(\Delta^,_x=m^2-2m+3\)

\(=\left(m-1\right)^2+2\ge2>0;\forall m\)

\(\Rightarrow\)pt luôn có 2 nghiệm phân biệt \(x_1,x_2\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=2m-3\end{cases}}\)

Ta có : \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

\(\Leftrightarrow1-x_1^2-x_2^2+x_1^2x_2^2=-4\)

\(\Leftrightarrow1-\left(x_1^2+x_2^2\right)+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-\left(x_1+x_2\right)^2+2x_1x_2+\left(x_1x_2\right)^2=-4\)

\(\Leftrightarrow1-4m^2+4m-6+\left(2m-3\right)^2=-4\)

\(\Leftrightarrow-8m+4=-4\)

\(\Leftrightarrow m=1\)

Vậy m=1 thì pt có 2 nghiệm phân biệt \(x_1,x_2\)thỏa mãn hệ thức  \(\left(1-x_1\right)^2\left(1-x_2^2\right)=-4\)

Ta có phương trình x2-(2m+1)x+m2=0

Xét \(\Delta=\left(2m-1\right)^2-4m^2=-4m+1>0\)

\(\Rightarrow m< \frac{1}{4}\)

a, Khòng mất tính tổn quát giả sử \(0< x_1< x_2\)

Để pt có 2 nghiệm dương phân biệt thì : \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\2m+1>0\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}\)

b, Ta có\(x_1=\frac{2m+1-\sqrt{1-4m}}{2};x_2=\frac{2m+1+\sqrt{1-4m}}{2}\)

\(\Rightarrow\left(x_1-m\right)^2+x_2=3m\)

\(\Leftrightarrow\left(\frac{1-\sqrt{1-4m}}{2}\right)^2+\frac{2m+1+\sqrt{1-4m}}{2}=3m\)

Giải ra tìm được m :))))