Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\Delta\)' = (-m)2 - m(m + 1) = m2 - m2 - m = - m
Để (*) có 2 nghiệm phân biệt <=> \(\Delta\)' \(\ge\) 0 <=> - m \(\ge\) 0 <=> m \(\le\) 0
b) Với m \(\le\) 0 thì (*) có 2 nghiệm x1 ; x2. Theo hệ thức Vi ét có:
x1 + x2 = 2m ; x1. x2 = m(m +1)
Để x1 + 2x2 = 0 <=> x1 = -2x2
=> x1 + x2 = -2x2 + x2 = -x2 = 2m => x2 = -2m và x1 = -2. (-2m) = 4m
Khi đó, x1.x2 = -8m2 = m.(m+1) => 9m2 + m = 0 <=> m(m +9) = 0 <=> m = 0 (TM) hoặc m =-9 (không TM )
Vậy m = 0 thì...
Câu hỏi của Postgass D Ace - Toán lớp 9 - Học toán với OnlineMath
a, Để phương trình có 2 nghiệm phân biệt thì
\(\Delta>0< =>\left(-2m\right)^2-4.\left(2m^2-1\right)>0\)
\(< =>4m^2-8m^2+4>0\)
\(< =>-4m^2+4>0\)
\(< =>m< 1\)
b, bạn dùng viet và phân tích 1 xíu là ok
Ta có : \(x^2-2mx+2m^2-1=0\left(a=1;b=-2m;c=2m^2-1\right)\)
a, Để phương trình có 2 nghiệm phân biệt thì \(\Delta>0\)
\(\left(-2m\right)^2-4\left(2m^2-1\right)>0\)
\(\Leftrightarrow4m^2-8m^2+4>0\Leftrightarrow-4m^2+4>0\)
\(\Leftrightarrow-4m^2>-4\Leftrightarrow m< 1\)
b, Theo hệ thức Vi et ta có : \(\hept{\begin{cases}S=x_1+x_2=\frac{-b}{a}=\frac{2m}{1}=2m\\P=x_1x_2=\frac{c}{a}=\frac{2m^2-1}{1}=2m^2-1\end{cases}}\)
Ta có : \(x_1^3-x_1^2+x_2^3-x_2^2=2\)
Ta có thể viết là : \(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=2\)tương tự vs \(x_1^3+x_2^3-\left(x_1+x_2\right)^2=2\)
\(\Leftrightarrow x_1^3+x_2^3-\left(2m\right)^2=2\Leftrightarrow x_1^3+x_2^3-4m^2=2\)(*)
Phân tích nốt : cái \(x_1^3+x_2^3\)tớ ko biết phân tích thế nào, lm chỉ sợ sai
Ta có phương trình x2-(2m+1)x+m2=0
Xét \(\Delta=\left(2m-1\right)^2-4m^2=-4m+1>0\)
\(\Rightarrow m< \frac{1}{4}\)
a, Khòng mất tính tổn quát giả sử \(0< x_1< x_2\)
Để pt có 2 nghiệm dương phân biệt thì : \(\hept{\begin{cases}\Delta>0\\S>0\\P>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}m< \frac{1}{4}\\2m+1>0\\m>0\end{cases}\Leftrightarrow}0< m< \frac{1}{4}\)
b, Ta có\(x_1=\frac{2m+1-\sqrt{1-4m}}{2};x_2=\frac{2m+1+\sqrt{1-4m}}{2}\)
\(\Rightarrow\left(x_1-m\right)^2+x_2=3m\)
\(\Leftrightarrow\left(\frac{1-\sqrt{1-4m}}{2}\right)^2+\frac{2m+1+\sqrt{1-4m}}{2}=3m\)
Giải ra tìm được m :))))