Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có \(a< 0\)và \(ab< 0\)suy ra \(b>0\)
\(a< 0< b\)
ta có : \(A=\left|b-a+1\right|-\left|a-\left(-b\right)-2\right|\)
\(=b-a+1-\left|a+b-2\right|\)
Nếu \(a+b-2\ge0\Rightarrow ab\ge2\)
Ta có : \(A=b-a+1-\left(a+b-2\right)=3-2a\)
Nếu \(a+b-2< 0\Rightarrow a+b< 2\)
Ta có : \(A=b-a+1+a+b-2=2b-1\)
để C=-18 -/2x-6/-/3y+9/ đạt GTLN
=>/2x-6/ và /3y+9/ phải nhỏ nhất
mà /2x-6/ \(\ge\)0
nên /2x-6/ nhỏ nhất khi =0
vậy /2x-6/=0
=>2x-6=0
=>2x=6
=>x=3
mà /3y+9/\(\ge\)0
nên /3y+9/ nhỏ nhất khi =0
=>/3y+9/=0
=>3y+9=0
=>3y=-9
=>y=-3
vậy C=... đạt GTLN kai x=3 ; y = -3
de ot
de -18-I2x-6I-I3y+9I dat gia tri lon nhat thi I2x+6I va I3y+9I nho nhat
suy ra I2x+6I=0 suy ra x=-3
I3y+9I=0 suy ra y=-3
vay C dat gia tri lon nhat la -18 khi x=-3 ; y=-3
\(\Rightarrow\)(x + 1) . (x - 2)\(⋮\)(x + 6)
\(\Rightarrow\)(x + 1) . (x -2)\(⋮\)x + 6
(x - 2) . (x+1) \(⋮\)x+ 6
(x - 2) . (x + 6 - 5)\(⋮\)x+ 6
x + 6 \(⋮\)x + 6
5\(⋮\)x + 6
( x -2 ) \(⋮\)6
6+x\(\in\)Ư (5) = ( 1 , 5) Vì biểu thức trên dương nên 6 + x cũng dương.
x + 6 = 1 x + 6 =5
x=-5 x=-1
Vậy x\(\in\)(-5, -1)
\(\left|2x-1\right|+3=3\)
\(\left|2x-1\right|=3-3\)
\(\left|2x-1\right|=0\)
\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)
KL:....................
\(\left|x-2\right|+1=2\)
\(\left|x-2\right|=1\)
\(\Rightarrow\orbr{\begin{cases}x-2=1\\x-2=-1\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=1\end{cases}}\)
KL:........................................
Câu 3 tương tự
lát mk làm tiếp cho
Ta có: \(\hept{\begin{cases}\left|x^2-9\right|\ge0\forall x\\\left|x+3\right|\ge0\forall x\end{cases}}\)
Mà \(\left|x^2-9\right|+\left|x+3\right|=0\)
\(\Rightarrow\hept{\begin{cases}\left|x^2-9\right|=0\\\left|x+3\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x^2-9=0\\x=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=9\\x=-3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\pm3\\x=-3\end{cases}\Rightarrow}x=-3}\)
Vậy \(x=-3\)
\(\left|x-2\right|=x-2\)
\(\Rightarrow x-2\ge0\forall x\)
\(\Rightarrow x\ge2\)
Vậy \(x\ge2\)
\(\left|x-3\right|=3-x\)
\(\Rightarrow\left|x-3\right|=-\left(x-3\right)\)
\(\Rightarrow x-3\le0\)
\(\Rightarrow x\le3\)
Vậy \(x\le3\)
Ta có |2x - 3| + |2x + 1| = |3 - 2x| + |2x + 1| \(\ge\left|3-2x+2x+1\right|=\left|4\right|=4\)
Dấu "=" xảy ra <=> (3 - 2x)(2x + 1) \(\ge\)0
Xét 2 trường hợp
TH1 : \(\hept{\begin{cases}3-2x\le0\\2x+1\le0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge1,5\\x\le-\frac{1}{2}\end{cases}}\left(\text{loại}\right)\)
TH2 : \(\hept{\begin{cases}3-2x\ge0\\2x+1\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\le1,5\\x\ge-0,5\end{cases}}\Rightarrow-0,5\le x\le1,5\)
Vậy -0,5 \(\le x\le1,5\)là giá trị phải tìm
2) ||4x - 2| - 2| = 4
=> \(\orbr{\begin{cases}\left|4x-2\right|-2=4\\\left|4x-2\right|-2=-4\end{cases}}\Rightarrow\orbr{\begin{cases}\left|4x-2\right|=6\\\left|4x-2\right|=-2\left(\text{loại}\right)\end{cases}}\)
=> |4x - 2| = 6
=> \(\orbr{\begin{cases}4x-2=6\\4x-2=-6\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy x \(\in\left\{2;-1\right\}\)là giá trị cần tìm