K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2018

ta có :

\(10A=\frac{10^{2014}+10}{10^{2014}+1}=\frac{\left(10^{2014}+1\right)+9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)

\(10B=\frac{10^{2015}+10}{10^{2015}+1}=\frac{\left(10^{2015}+1\right)+9}{10^{2015}+1}=1+\frac{9}{10^{2015}+1}\)

ta thấy \(10^{2014}+1< 10^{2015}+1\Rightarrow\frac{9}{10^{2014}+1}>\frac{9}{10^{2015}+1}\Rightarrow10A>10B\Rightarrow A>B\)

21 tháng 5 2015

\(A=\frac{98^{2015}+1}{98^{2014}+1}>1\)

Ta có:

\(A=\frac{98^{2015}+1+97}{98^{2014}+1+97}=\frac{98^{2015}+98}{98^{2014}+98}=\frac{98\left(98^{2014}+1\right)}{98\left(98^{2013}+1\right)}\)

\(=\frac{98\left(98^{2015}+1\right)}{98\left(98^{2014}+1\right)}=\frac{98^{2014}+1}{98^{2013}+1}\)

Ta thấy: \(\frac{98^{2014}+1}{98^{2013}+1}=B\)mà \(A>1\)

\(\Rightarrow A>B\)

13 tháng 3 2017

\(A=\frac{98^{2015}+1}{98^{2014}+1}>1\)

Theo đề ta có:

\(A=\frac{98^{2015}+1+97}{98^{2014}+1+97}=\frac{98^{2015}+98}{98^{2014}+98}=\frac{98\left(98^{2014}+1\right)}{98\left(98^{2013}+1\right)}\) 

   \(=\frac{98\left(98^{2015}+1\right)}{98\left(98^{2014}+1\right)}=\frac{98^{2014}+1}{98^{2013}+1}\)

Lúc này ta thấy: \(\frac{98^{2014}+1}{98^{2013}+1}=B\)mà  \(A>1\)

\(\Leftrightarrow A>B\).

29 tháng 3 2015

bn xin cũng vô ích, các bn ấy còn lâu mới trả lời, lười lắm ó

30 tháng 3 2015

mk ko bảo bn âu: lê  nguyên bách à

30 tháng 9 2015

A = 1+22+23+24+......+22013

2A = 22+23+24+......+22013+22014

=> 2A - A = A = 22015 - 1

Vậy A = 22015 - 1

18 tháng 2 2021

1+1=2

2+2=4

4+1=5

5 với 5 là 10.000.000.000.000 $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$

22 tháng 4 2015

Tổng S có 50 phân số

=> S > 1/100 + 1/100 + 1/100 +...+ 1/100 (50 phân số) => S > 1/2.

Vậy S > 1/2