Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(8\frac{7}{10}+2\frac{3}{4}=\frac{87}{10}+\frac{11}{4}=\frac{174}{20}+\frac{55}{20}=\frac{229}{20}\)
Bạn chỉ cần đưa về phân số xong tính bình thường. Muốn đổi từ hỗn số sang phân số, ta chỉ cần lấy phần nguyên nhân cho mẫu rồi cộng với tử là xong. Chứ bạn cứ hỏi mấy bài dễ như thế này thì k giỏi đc đâu!!!
ở dãy 1 thì số đứng sau bằng tổng hai số đứng trước
ta có 5 số tiếp theo la 40,74, 136,...
\(a.\)\(1\frac{2}{3}:\frac{2}{3}-\frac{3}{4}\cdot\frac{2}{3}+5\frac{3}{7}\)
\(=\frac{5}{3}:\frac{2}{3}-\frac{3}{4}\cdot\frac{2}{3}+\frac{38}{7}\)
\(=\frac{5}{3}\cdot\frac{3}{2}-\frac{3}{4}\cdot\frac{2}{3}+\frac{38}{7}\)
\(=\frac{5}{2}-\frac{1}{2}+\frac{38}{7}\)
\(=\frac{4}{2}+\frac{38}{7}\)
\(=2+\frac{38}{7}\)
\(=\frac{14}{7}+\frac{38}{7}\)
\(=\frac{52}{7}\)
\(b.1\frac{1}{3}-1\frac{1}{4}:1\frac{1}{2}+2\frac{3}{4}\cdot3\frac{2}{3}\)
\(=\frac{4}{3}-\frac{5}{4}:\frac{3}{2}+\frac{11}{4}\cdot\frac{11}{3}\)
\(=\frac{4}{3}-\frac{5}{4}\cdot\frac{2}{3}+\frac{11}{4}\cdot\frac{11}{3}\)
\(=\frac{4}{3}-\frac{5}{6}+\frac{121}{12}\)
\(=\frac{16}{12}-\frac{10}{12}+\frac{121}{12}\)
\(=\frac{6}{12}+\frac{121}{12}\)
\(=\frac{127}{12}\)
\(c.7\cdot\frac{2}{3}-\frac{2}{5}:\frac{1}{2}-\frac{2}{3}\)
\(=7\cdot\frac{2}{3}-\frac{2}{5}\cdot\frac{2}{1}-\frac{2}{3}\)
\(=7\cdot\frac{2}{3}-\frac{4}{5}-\frac{2}{3}\)
\(=\frac{14}{3}-\frac{4}{5}-\frac{2}{3}\)
\(=\frac{70}{15}-\frac{12}{15}-\frac{10}{15}\)
\(=\frac{58}{15}-\frac{10}{15}\)
\(=\frac{48}{15}=\frac{16}{5}\)
\(\frac{5}{3}:\frac{2}{3}-\frac{3}{4}\cdot\frac{2}{3}+\frac{38}{7}\)
\(\frac{5}{2}-\frac{1}{2}+\frac{38}{7}\)
\(2+\frac{38}{7}\)
\(\frac{52}{7}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{2011}{2013}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{2013}\div2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{2011}{4026}\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2013}\)
\(\Leftrightarrow x=2013-1=2012\)
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+...+2015}\)
\(=\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+2015\right).2015:2}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{2015.2016}\)
\(=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)
\(=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\right)\)
\(=2.\left(1-\frac{1}{2016}\right)\)
\(=2.\frac{2015}{2016}=\frac{2015}{1008}\)
\(\frac{23}{12}\)
\(\frac{314}{105}\)
\(\frac{59}{60}\)
\(\frac{199}{90}\)
\(\frac{1}{18}\)
\(\frac{13}{36}\)
\(\frac{4}{221}\)
\(\frac{4}{85}\)
1-\(\frac{1}{2}\)+ \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{2013}\)- \(\frac{1}{2014}\)
=(1+\(\frac{1}{3}\)+...+\(\frac{1}{2013}\)) - (\(\frac{1}{2}\)+ \(\frac{1}{4}\) + ...+ \(\frac{1}{2014}\))
=(1+\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+...+ \(\frac{1}{2013}\)+ \(\frac{1}{2014}\))-2.(\(\frac{1}{2}\)+ \(\frac{1}{4}\)+...+\(\frac{1}{2014}\))
=1+\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+ \(\frac{1}{2013}\)+ \(\frac{1}{2014}\)- 1-\(\frac{1}{2}\)-...-\(\frac{1}{1007}\)
=(1+\(\frac{1}{2}\)+ \(\frac{1}{3}\)+ \(\frac{1}{4}\)+...+\(\frac{1}{1007}\))+\(\frac{1}{1008}\)+ \(\frac{1}{1009}\)+...+\(\frac{1}{2013}\)+ \(\frac{1}{2014}\)-(1+\(\frac{1}{2}\)+...+\(\frac{1}{1007}\))
=\(\frac{1}{1008}\)+ \(\frac{1}{1009}\)+...+\(\frac{1}{2013}\)+ \(\frac{1}{2014}\).
mình chưa hiểu lắm
tại sao nhân 2 lên và còn 1 - \(\frac{1}{2}\)- ... - \(\frac{1}{1007}\)
1007 ở đâu?????