Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) M = (x² + 3xy - 3x³) + (2y³ - xy + 3x³)
= x² + 3xy - 3x³ + 2y³ - xy + 3x³
= x² + (3xy - xy) + (-3x³ + 3x³) + 2y³
= x² + 2xy + 2y³
Tại x = 5 và y = 4
M = 5² + 2.5.4 + 2.4³
= 25 + 40 + 2.64
= 65 + 128
= 193
b) N = x²(x + y) - y(x² - y²)
= x³ + x²y - x²y + y³
= x³ + (x²y - x²y) + y³
= x³ + y³
Tại x = -6 và y = 8
N = (-6)³ + 8³
= -216 + 512
= 296
c) P = x² + 1/2 x + 1/16
= (x + 1/2)²
Tại x = 3/4 ta có:
P = (3/4 + 1/2)² = (5/4)² = 25/16
a, \(A=x^3y\left(x^4-y^3\right)-x^2y\left(x^5-y^3\right)\)
\(=x^7y-x^3y^4-x^7y+x^2y^3\)
\(=-x^3y^4+x^2y^3\)
\(=-x^2y^3\left(xy+1\right)\)
Thay x = -1 ; y = 2 ta có:
\(-\left(-1\right)^2.2^3\left(\left(-1\right).2+1\right)=-1.8\left(-2+1\right)=-8.-1=8\)
b, \(B=x^3y^3\left(x^4-y^4\right)-x^3y^4\left(x^2-y^3\right)\)
\(=x^7y^3-x^3y^7-x^5y^6+x^3y^7\)
\(=x^7y^3-x^5y^6\)
\(=x^5y^3\left(x^2-y^3\right)\)
Thay x=1 ; y =2 ta có :
\(1^5.2^3\left(1^2-2^3\right)=1.8\left(1-8\right)=8.\left(-7\right)=-56\)
a) \(A=\left(x-y\right).\left(x^2+x+y\right)-x.\left(2x^2+2y^3\right)\)
\(=x^3+x^2+xy-x^2y-xy-y^2-2x^3-2xy^3\)
\(=-x^3-y^2-2xy^3\)
b) Ta thay \(x=-1;y=-5\)
\(-x^3-y^2-2xy^3\)
\(=-\left(-1\right)^3-\left(-5\right)^2-2.\left(-1\right).\left(-5\right)^3\)
\(=1-25-250\)
\(=-274\)
\(P=x^2+8x+16+x^2-25-2x^2-2x=6x-9\\ Q=y\left(x-4\right)-5\left(x-4\right)=\left(y-5\right)\left(x-4\right)\\ Q=\left(5,5-5\right)\left(14-4\right)=0,5\cdot10=5\)
Bài 2:
a.
\(3x(x-4y)-\frac{12}{5}y(y-5x)=3x^2-12xy-\frac{12}{5}y^2+12xy\)
\(=3x^2-\frac{12}{5}y^2=3.4^2-\frac{12}{5}.(-5)^2=-12\)
b.
\(u=\frac{-1}{3}; v=\frac{-2}{3}\Rightarrow u+v+1=0\)
\(2u(1+u-v)-v(1-2u+v)=2u(1+u+v-2v)+v(1+u+v-3u)\)
\(=2u.(-2v)+v(-3u)=-4uv-3uv=-7uv=-7.\frac{-1}{3}.\frac{-2}{3}=\frac{-14}{9}\)
Bài 1:
\(A=x^6-(x^6-x^5)-(x^5+x^4)+(x^4-x^3)+(x^3+x^2)-(x^2+x)+1\)
\(=-x+1=-(x-1)=-(999-1)=-998\)
\(Q=x\left(x^2+y\right)-x^2\left(x+y\right)+y\left(x^4+x\right)\)
=> \(Q=\left(x^3+xy\right)-\left(x^3+x^2y\right)+\left(x^4y+xy\right)\)
=> \(Q=\left(x^3-x^3\right)+\left(xy+xy\right)+\left(x^4y-x^2y\right)\)
=> \(Q=x^4y-x^2y+2xy\)
=> \(Q=\frac{2^4.1}{2}-\frac{2^2.1}{2}+\frac{2.2.1}{2}\)
=> \(Q=2^3-2+2=2^3=8\)
Vậy \(Q=8\)
sửa đề : bạn check lại đề xem nhé
\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(y-x\right)\)
\(=\left(x+y\right)^2-2\left(x+y\right)\left(y-x\right)+\left(y-x\right)^2\)
\(=\left(x+y-y+x\right)^2=\left(2x\right)^2=4x^2\)
Thay x = -1 ; y = -2 ta được : \(4.1=4\)
\(A=\left(x+y\right)^2+\left(x+y\right)^2-2\left(x+y\right)\left(y-x\right)\)
\(=2\left(x+y\right)^2-2\left(x+y\right)\left(y-x\right)=2\left(x+y\right)\left[\left(x+y\right)-\left(y-x\right)\right]\)
\(=2\left(x+y\right)\left(x+y-y+x\right)=2.2x\left(x+y\right)=4x\left(x+y\right)\)
Thay x = -1 ; y = -2 ta được : \(-4.\left(-3\right)=12\)
a) \(A=4x^2-4x+1+9-4x^2=-4x+10\)
\(=-4.\dfrac{1}{4}+10=9\)
b) \(B=x^3+xy-x^3-8y^3=y\left(x-8y^2\right)\)
\(=\left(-2\right).\left(32-32\right)=0\)
a: Ta có: \(A=\left(2x-1\right)^2+\left(3-2x\right)\left(3+2x\right)\)
\(=4x^2-4x+1+9-4x^2\)
\(=-4x+10\)
\(=-4\cdot\dfrac{1}{4}+10=-1+10=9\)