K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2023

Dễ thấy, X nhận các giá trị thuộc tập \(\left\{0;1;2\right\}\)

Xác suất để lấy ra 3 sản phẩm không có phế phẩm:

\(P\left(X=0\right)=\dfrac{C^0_2.C_4^{3-0}}{C^3_6}=\dfrac{1}{5}\)

Xác suất để lấy ra 2 sản phẩm không phế phẩm và 1 sản phẩm phế phẩm:

\(P\left(X=1\right)=\dfrac{C^1_2.C^{3-1}_4}{C^3_6}=\dfrac{3}{5}\)

Xác suất để lấy ra 1 sản phẩm không phế phẩm và 2 sản phẩm phế phẩm:

\(P\left(X=2\right)=\dfrac{C^2_2.C^{3-2}_4}{C^3_6}=\dfrac{1}{5}\)

 bảng phân phối xác suất của X:

XP(X)
0\(\dfrac{1}{5}\)
1\(\dfrac{3}{5}\)
2\(\dfrac{1}{5}\)
HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Số kết quả xảy ra khi chọn ngẫu nhiên 3 sản phẩm là: \(C_{20}^3\) ( kết quả )

b) Chọn ngẫu nhiên 3 sản phẩm từ  20 sản phẩm  ta được một tổ hợp chập 3 của 20. Do đó, số phần tử của không gian mẫu là:  \(n\left( \Omega  \right) = C_{20}^3\)( phần tử)

Gọi A là biến cố “Cả 3 sản phẩm được chọn là chính phẩm”

Để chọn được cả 3 sản phẩm đều là chính phẩm thì ta phải chọn 3 sản phẩm từ 16 chính phẩm tức là ta được một tổ hợp chập 3 của 16 phần tử. Do đó số phần tử của biến cố A là: \(n\left( A \right) = C_{16}^3\)( phần tử)

Vậy xác suất của biến cố A là: \(P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega  \right)}} = \frac{{C_{16}^3}}{{C_{20}^3}} = \frac{{28}}{{57}}\).

30 tháng 11 2019

Gọi p là tỉ lệ phế phẩm của kho hàng, với độ tin cậy \(\gamma\), khoảng tin cậy của p có dạng :

\(f_n-\frac{\sqrt{f_n\left(1-f_n\right)}}{\sqrt{n}}\Phi^{-1}\left(\frac{\gamma}{2}\right)< p< f_n+\frac{\sqrt{f_n\left(1-f_n\right)}}{\sqrt{n}}\Phi^{-1}\left(\frac{\gamma}{2}\right)\)(*)

Theo đề bài ta có: n= 400 \(\Rightarrow\sqrt{n}=20\)

              \(f_n=\frac{20}{400}=0,05\)\(\gamma=0,95\Rightarrow\Phi^{-1}\left(\frac{\gamma}{2}\right)=\Phi^{-1}\left(0,475\right)=1,96\)

(*)\(\Leftrightarrow0,05-\frac{\sqrt{0,05.0,95}}{20}.1,96< p< 0,05+\frac{\sqrt{0,05.0,95}}{20}.1,96\)

\(\Leftrightarrow0,05-0,02< p< 0,05+0,02\)

\(\Leftrightarrow0,03< p< 0,07\)

Vậy khoảng tin cậy của tỉ lệ phế phẩm của kho hàng là : 0,03 < p < 0 ,07

30 tháng 11 2019

thanks nha!!!!

Một xí nghiệp sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại Ii lãi 1,6 triệu đồng. Muốn sản xuất 1 tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Biết rằng một máy không thể sản xuất đồng thời hai...
Đọc tiếp

Một xí nghiệp sản xuất hai loại sản phẩm kí hiệu là I và II. Một tấn sản phẩm loại I lãi 2 triệu đồng, một tấn sản phẩm loại Ii lãi 1,6 triệu đồng. Muốn sản xuất 1 tấn sản phẩm loại I phải dùng máy M1 trong 3 giờ và máy M2 trong 1 giờ. Muốn sản xuất 1 tấn sản phẩm loại II phải dùng máy M1 trong 1 giờ và máy M2 trong 1 giờ. Biết rằng một máy không thể sản xuất đồng thời hai loại sản phẩm; máy M1 làm việc không quá 6 giờ trong một ngày, máy M2 một ngày chỉ làm việc không quá 4 giờ.
Hãy đặt kế hoạch sản xuất của xí nghiệp sao cho tổng số tiền lãi cao nhất.
A) một ngày sản xuất 1 tấn sản phẩm loại I và 3 tấn sản phẩm loại II.
B) một ngày sản xuất 1 tấn sản phẩm loại II và 3 tấn sản phẩm loại I.
C) một ngày sản xuất 2 tấn sản phẩm loại I và 2 tấn sản phẩm loại II.
D) một ngày sản xuất 3 tấn sản phẩm loại II.

1

Trong 11 ngày đầu làm được 11x112=1232(sp)

Trong 14 ngày sau làm được 14x125=1750(sp)

Cả tổ đã làm được 1232+1750=2982(sp)

11 tháng 5 2020
https://i.imgur.com/nbaTTsh.jpg
11 tháng 5 2020

Gọi số sản phẩm làm theo kế hoạch là \(x\) (sản phẩm)

=> Số ngày dự định làm xong là: \(\frac{x}{25}\) (ngày)

Số sản phẩm làm được sau khi cải tiến kĩ thuật là: \(x+10\) (sản phẩm)

=> Số ngày làm xong là: \(\frac{x+10}{30}\) (ngày)

Ta có: \(\frac{x}{25}-\frac{x+10}{30}=3\)

Giải phương trình đi bạn :)

15 tháng 4 2017

Gọi x là số đơn vị sản phẩm loại I, y là số đơn vị sản phẩm loại II được nhà máy lập kế hoạch sản xuất. Khi đó số lãi nhà máy nhân được là P = 3x + 5y (nghìn đồng).

Các đại lượng x, y phải thỏa mãn các điều kiện sau:

(I)

(II)

Miền nghiệm của hệ bất phương trình (II) là đa giác OABCD (kể cả biên).

Biểu thức F = 3x + 5y đạt giá trị lớn nhất khi (x; y) là tọa độ đỉnh C.

(Từ 3x + 5y = 0 => y = Các đường thẳng qua các đỉnh của OABCD và song song với đường y = cát Oy tại điểm có tung độ lớn nhất là đường thẳng qua đỉnh C).

Phương trình hoành độ điểm C: 5 - x = <=> x = 4.

Suy ra tung độ điểm C là yc = 5 - 4 = 1. Tọa độ C(4; 1). Vậy trong các điều kiện cho phép của nhà máy, nếu sản xuất 4 đơn vị sản phẩm loại I và 1 đơn vị sản phẩm đơn vị loại II thì tổng số tiền lãi lớn nhất bằng:

Fc = 3.4 + 5.1 = 17 nghìn đồng.