Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) F = \(F_{13}+F_{23}=\frac{k\cdot8\cdot10^{-8}\cdot8\cdot10^{-8}}{0,03^2}+\frac{k\cdot8\cdot10^{-8}\cdot8\cdot10^{-58}}{0.03^2}=0.128\left(N\right)\)
b) F = \(F_{13}+F_{23}=\frac{k\cdot8\cdot10^{-8}\cdot8\cdot10^{-8}}{0,04^2}+\frac{k\cdot8\cdot10^{-8}\cdot8\cdot10^{-8}}{0,02^2}=0,18\left(N\right)\)
c) F = \(\left|F_{13}-F_{23}\right|=\left|\frac{k\cdot8\cdot10^{-8}\cdot8\cdot10^{-8}}{0,04^2}-\frac{k\cdot8\cdot10^{-8}\cdot8\cdot10^{-8}}{0,1^2}\right|=0,03024\left(N\right)\)
d) F = \(\sqrt{F_{13}^2+F^2_{23}+2\cdot F_{13}\cdot F_{23}\cdot\cos60}=0,0277\left(N\right)\)
\(E_{AC}=\frac{k\left|q_1\right|}{CA^2}=...;E_{BC}=\frac{k\left|q_2\right|}{CB^2}=...\)
a/ \(\sum E_C=E_{AC}+E_{BC}=...\)
b/ \(\sum E_C=\left|E_{AC}-E_{BC}\right|=...\)
c/ \(AC=BC=\sqrt{2^2+2^2}=2\sqrt{2}\left(cm\right)\)
\(\sum E_C=\sqrt{E_{AC}^2+E_{BC}^2}=...\)
1/
CA=4cm; CB=10 cm
\(F_1=\dfrac{k\left|q_1q_3\right|}{AC^2}\left(N\right);F_2=\dfrac{k\left|q_2q_3\right|}{BC^2}\)
\(\Rightarrow\sum F=\left|F_1-F_2\right|=...\left(N\right)\)
AC=CB=5cm
\(AB^2=AC^2+BC^2-2.AC.BC.\cos\alpha\Rightarrow\alpha=....\)
\(F_1=\dfrac{k\left|q_1q_3\right|}{AC^2}\left(N\right);F_2=\dfrac{k\left|q_2q_3\right|}{BC^2}\left(N\right)\)
\(\sum F=\sqrt{F_1^2+F_2^2+2.F_1F_2.\cos\left(180^0-\alpha\right)}=...\left(N\right)\)