Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2\left(x^2-4x+4\right)+4}+\sqrt{3\left(x^2-4x+4\right)+1}\)
\(\sqrt{2\left(x-2\right)^2+4}+\sqrt{3\left(x-2\right)^2+1}\ge2+1\) =3
dấu = khi x=2
vậy ptcos nghiệm duy nhất x=2
bạn chuyển cái căn bậc 4 sang rồi đánh giá pt
ko bít đánh giái thì lên mạng gó : phương pháp đánh giá phương trình
\(\sqrt{3x^2-12x+21}=\sqrt{3x^2-12x+12+9}=\sqrt{3\left(x-2\right)^2+9}\ge\sqrt{9}=3\)
\(\sqrt{5x^2-20x+24}=\sqrt{5x^2-20x+20+4}=\sqrt{5\left(x-2\right)^2+4}\ge\sqrt{4}=2\)
\(-2x^2+8x-3=-2x+8x-8+5=-2\left(x-2\right)^2+5\le5\)
\(VP\ge3+2=5,VT\le5\)
Suy ra \(VP=VT=5\)
Suy ra nghiệm của phương trình đạt tại \(x-2=0\Leftrightarrow x=2\).
\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\) ( SỬA ĐỀ)
\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)
\(|x-1-2|+|x-1-3|=1\)
\(|x-3|+|x-4|=1\)
Với \(x\le3\)thì PT thành \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)
Với \(3\le x< 4\)thì PT thành \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)
Với \(x\ge4\)thì PT thành \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)
Vậy \(3\le x\le4\)
ĐKXĐ: \(\frac{4-\sqrt{10}}{2}\le x\le\frac{4+\sqrt{10}}{2}\)
Đặt : \(\sqrt{3x^2-12x+21}=a;\sqrt{5x^2-20x+24}=b\left(a,b>0\right)\Rightarrow a^2-b^2=-2x^2+8x-3\)
Khi đó pt trở thành:
\(a+b=a^2-b^2\)
\(\Rightarrow a=b\)
Theo cách đặt: \(\sqrt{3x^2-12x+21}=\sqrt{5x^2-20x+24}\)
\(\Leftrightarrow2x^2-8x+3=0\)
Đến đây bạn tự giải nha
\(ĐKXĐ:x\ge\frac{5}{3}\)
\(\left(\sqrt{8x+1}-5\right)+\left(\sqrt{3x-5}-2\right)=\left(\sqrt{7x+4}-5\right)+\left(\sqrt{2x-2}-2\right)\)
\(\Leftrightarrow\frac{8x+1-25}{\sqrt{8x+1}+5}+\frac{3x-5-4}{\sqrt{3x-5}+2}-\frac{7x+4-25}{\sqrt{7x+4}+5}-\frac{2x-2-4}{\sqrt{2x-2}+2}=0\)
\(\Leftrightarrow\left(x-3\right)\left[\frac{8}{\sqrt{8x+1}+5}+\frac{3}{\sqrt{3x-5}+2}-\frac{7}{\sqrt{7x+4}+5}-\frac{2}{\sqrt{2x-2}+2}\right]=0\)
Ngoặc trong chắc vô nghiệm :3
Đặt t=\(2x^2-8x+12\)
=>3x^2-12x+13=t+t/2-6
đătk lm j,,chuyển sang đánh giá cho nhanh
ko bít đánh giá lên mạng tra nbha