K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2023

1. x(x-3)-(x+2)(x-1)=3 <=> x- 3x - x2 - x + 2 = 3 => 4x = -1 => x = 1/4 

2. 

a) x = 0, x=1 (2 nghiệm, loại)

b) x2 + 1 > 0 => x = - 2 (1 nghiệm, chọn b)

c) <=> x(x-3) = 0 => x = 0, x=3 (2 nghiệm, loại)

d) (x-1)2 + 2 > 0 => Vô nghiệm (loại)

1 tháng 3 2019

1) \(x^4-6x^3-x^2+54x-72=0\)

\(\Leftrightarrow x^3\left(x-2\right)-4x^2\left(x-2\right)-9x\left(x-2\right)+36\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-4x^2-9x+36\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x-4\right)-9\left(x-4\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x^2-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)\left(x-3\right)\left(x+3\right)=0\)

Tự làm nốt...

2) \(x^4-5x^2+4=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-4\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)

Tự làm nốt...

1 tháng 3 2019

\(x^4-2x^3-6x^2+8x+8=0\)

\(\Leftrightarrow x^3\left(x-2\right)-6x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3-6x-4\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+2\right)-2x\left(x+2\right)-2\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x^2-2x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left[\left(x-1\right)^2-\left(\sqrt{3}\right)^2\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)

...

\(2x^4-13x^3+20x^2-3x-2=0\)

\(\Leftrightarrow2x^3\left(x-2\right)-9x^2\left(x-2\right)+2x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x^3-9x^2+2x+1\right)=0\)

22 tháng 1 2020

\(\text{CM vô nghiệm}\)
\(\text{a) }\left(x-2\right)^3=\left(x-2\right).\left(x^2+2x+4\right)-6\left(x-1\right)^2\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6\left(x^2-2x+1\right)\)
\(\Leftrightarrow x^3-6x^2+12x-8=x^3-8-6x^2+12x-6\)
\(\Leftrightarrow x^3-6x^2+12x-x^3+6x-12x=-8+8-6\)
\(\Leftrightarrow0x=-6\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{b) }4x^2-12x+10=0\)
\(\Leftrightarrow\left(4x^2-12x+9\right)+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2+1=0\)
\(\Leftrightarrow\left(2x-3\right)^2=-1\text{ (vô lí)}\)
\(\text{Vậy }S=\varnothing\)

\(\text{CM vô số nghiệm}\)
       \(\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)^3-3x\left(x+1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left[\left(x+1\right)^2-3x\right]\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2+2x+1-3x\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x+1\right)=\left(x+1\right)\left(x^2-x+1\right)\text{ (luôn luôn đúng)}\)
\(\text{Vậy }S\inℝ\)

25 tháng 4 2020

Bài 1:

a) (5x-4)(4x+6)=0

\(\Leftrightarrow\orbr{\begin{cases}5x-4=0\\4x+6=0\end{cases}\Leftrightarrow\orbr{\begin{cases}5x=4\\4x=-6\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{4}{5}\\y=\frac{-3}{2}\end{cases}}}\)

b) (x-5)(3-2x)(3x+4)=0

<=> x-5=0 hoặc 3-2x=0 hoặc 3x+4=0

<=> x=5 hoặc x=\(\frac{3}{2}\)hoặc x=\(\frac{-4}{3}\)

c) (2x+1)(x2+2)=0

=> 2x+1=0 (vì x2+2>0)

=> x=\(\frac{-1}{2}\)

30 tháng 4 2020

bài 1: 

a) (5x - 4)(4x + 6) = 0

<=> 5x - 4 = 0 hoặc 4x + 6 = 0

<=> 5x = 0 + 4 hoặc 4x = 0 - 6

<=> 5x = 4 hoặc 4x = -6

<=> x = 4/5 hoặc x = -6/4 = -3/2

b) (x - 5)(3 - 2x)(3x + 4) = 0

<=> x - 5 = 0 hoặc 3 - 2x = 0 hoặc 3x + 4 = 0

<=> x = 0 + 5 hoặc -2x = 0 - 3 hoặc 3x = 0 - 4

<=> x = 5 hoặc -2x = -3 hoặc 3x = -4

<=> x = 5 hoặc x = 3/2 hoặc x = 4/3

c) (2x + 1)(x^2 + 2) = 0

vì x^2 + 2 > 0 nên:

<=> 2x + 1 = 0

<=> 2x = 0 - 1

<=> 2x = -1

<=> x = -1/2

bài 2: 

a) (2x + 7)^2 = 9(x + 2)^2

<=> 4x^2 + 28x + 49 = 9x^2 + 36x + 36

<=> 4x^2 + 28x + 49 - 9x^2 - 36x - 36 = 0

<=> -5x^2 - 8x + 13 = 0

<=> (-5x - 13)(x - 1) = 0

<=> 5x + 13 = 0 hoặc x - 1 = 0

<=> 5x = 0 - 13 hoặc x = 0 + 1

<=> 5x = -13 hoặc x = 1

<=> x = -13/5 hoặc x = 1

b) (x^2 - 1)(x + 2)(x - 3) = (x - 1)(x^2 - 4)(x + 5)

<=> x^4 - x^3 - 7x^2 + x + 6 = x^4 + 4x^3 - 9x^2 - 16x + 20

<=> x^4 - x^3 - 7x^2 + x + 6 - x^4 - 4x^3 + 9x^2 + 16x - 20 = 0

<=> -5x^3 - 2x^2 + 17x - 14 = 0

<=> (-x + 1)(x + 2)(5x - 7) = 0

<=> x - 1 = 0 hoặc x + 2 = 0 hoặc 5x - 7 = 0

<=> x = 0 + 1 hoặc x = 0 - 2 hoặc 5x = 0 + 7

<=> x = 1 hoặc x = -2 hoặc 5x = 7

<=> x = 1 hoặc x = -2 hoặc x = 7/5

1 tháng 1 2020

Ví dụ cho bạn một bài, còn lại tương tự.

a)Ta có: \(3x^4-5x^3+8x^2-5x+3\)

\(=3x^2\left(x-\frac{5}{6}\right)^2+\frac{71}{12}\left(x-\frac{30}{71}\right)^2+\frac{138}{71}>0\)

Vậy phương trình vô nghiệm.

1 tháng 1 2020

tth_new bạn làm hết ra đc ko. mình đọc không hiểu đc

10 tháng 2 2019

1. x\(^4\)-x\(^3\)+2x\(^2\)-x+1=0

\(\Leftrightarrow\)(x^4-x^3+x^2) +(x^2-x+1)=0

\(\Leftrightarrow\)x^2(x^2-x+1) +(x^2-x+1)=0

\(\Leftrightarrow\)(x^2-x+1)(x^2+1)=0

\(\Leftrightarrow\)\([\)(x^2-x+1/4)+3/4\(]\)(x^2+1)=0

\(\Leftrightarrow\)\([\)(x-1/2)\(^2\)+3/4\(]\)(x^2+1)=0  

VÌ (x-1/2)\(^2\)+3/4>0\(\forall\)x

x^2+1>0\(\forall\)x

\(\Rightarrow\)Phương trình đã cho vô nghiệm

10 tháng 2 2019

1)x^4 - x^3 + 2x^2 - x + 1 = 0

  (x^4 + 2x^2 +1) - (x^3+x)= 0

   x^4 + 2x^2 + 1               = x^3 - x

     (x^2 + 1)^2                  = x(x^2 + 1)

(x^2+1)(x^2+1)                =  x(x^2 + 1)

(x^2+1)(x^2+1)                =  x(x^2 + 1)

               x^2+1                =  x (vô lí)

==> PT vô nghiệm

26 tháng 2 2016

bạn đã học giải pt bậc 2 chưa có công thức bài nào cũng giải đc

27 tháng 2 2016

a) x^2+3x=0

<=> x(x+3)=0

<=> x=0 hoặc x+3=0

<=> x=0 hoặc x=-3

S={0;-3}

b) x^2-x-42=0

<=> x^2-7x+6x-42=0

<=> x(x-7)+6(x-7)=0

<=> (x-7)(x+6)=0

<=> x-7=0 hoac x+6=0

<=> x=7,x=-6

c) ,d) tương tự

e) 2x^3+3x^2-x-1=0

<=> 2x^3+x^2+2x^2+x-2x-1=0

<=> x^2(2x+1)+x(2x+1)-(2x+1)=0

<=> (2x+1)(x^2+x-1)=0

<=>2x+1=0 hoặc x^2+x-1=0

<=> x=-1/2 ,x=-1+căn5/2,x=-1-căn5/2

3 tháng 2 2021

a) (5x - 1)(2x + 1) = (5x -1)(x + 3)

<=> (5x - 1)(2x + 1) - (5x -1)(x + 3) = 0

<=> (5x - 1)(2x + 1 - x - 3) = 0

<=> (5x - 1)(x - 2) = 0

<=> \(\orbr{\begin{cases}5x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0,2\\x=2\end{cases}}\)

Vậy x = 0,2 ; x = 2 là nghiệm phương trình

b) x3 - 5x2 - 3x + 15 = 0

<=> x2(x - 5) - 3(x - 5) = 0

<=> (x2 - 3)(x - 5) = 0

<=> \(\left(x-\sqrt{3}\right)\left(x+\sqrt{3}\right)\left(x-5\right)=0\)

<=> \(x-\sqrt{3}=0\text{ hoặc }x+\sqrt{3}=0\text{ hoặc }x-5=0\)

<=> \(x=\sqrt{3}\text{hoặc }x=-\sqrt{3}\text{hoặc }x=5\)

Vậy \(x\in\left\{\sqrt{3};\sqrt{-3};5\right\}\)là giá trị cần tìm

3 tháng 2 2021

c) (x - 3)2 - (5 - 2x)2 = 0

<=> (x - 3 + 5 - 2x)(x - 3 - 5 + 2x) = 0

<=> (-x + 2)(3x - 8) = 0

<=> \(\orbr{\begin{cases}-x+2=0\\3x-8=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)

Vậy tập nghiệm phương trình \(S=\left\{2;\frac{8}{3}\right\}\)

d) x3 + 4x2 + 4x = 0

<=> x(x2 + 4x + 4) = 0

<=> x(x + 2)2 = 0

<=> \(\orbr{\begin{cases}x=0\\\left(x+2\right)^2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-2\end{cases}}\)

Vậy tập nghiệm phương trình S = \(\left\{0;-2\right\}\)

20 tháng 2 2018
m.n giải đc câu nào thì giải nha
27 tháng 5 2018

a) 2x(x - 3) + 5(x - 3) = 0 ⇔ (x - 3)(2x + 5) = 0 ⇔ x - 3 = 0 hoặc 2x + 5 = 0

1) x - 3 = 0 ⇔ x = 3

2) 2x + 5 = 0 ⇔ 2x = -5 ⇔ x = -2,5

Vậy tập nghiệm của phương trình là S = {3;-2,5}

b) (x2 - 4) + (x - 2)(3 - 2x) = 0 ⇔ (x - 2)(x + 2) + (x - 2)(3 - 2x) = 0

⇔ (x - 2)(x + 2 + 3 - 2x) = 0 ⇔ (x - 2)(-x + 5) = 0 ⇔ x - 2 = 0 hoặc -x + 5 = 0

1) x - 2 = 0 ⇔ x = 2

2) -x + 5 = 0 ⇔ x = 5

Vậy tập nghiệm của phương trình là S = {2;5}

c) x3 – 3x2 + 3x – 1 = 0 ⇔ (x – 1)3 = 0 ⇔ x = 1.

Vậy tập nghiệm của phương trình là x = 1

d) x(2x - 7) - 4x + 14 = 0 ⇔ x(2x - 7) - 2(2x - 7) = 0

                                     ⇔ (x - 2)(2x - 7) = 0 ⇔ x - 2 = 0 hoặc 2x - 7 = 0

1) x - 2 = 0 ⇔ x = 2

2) 2x - 7 = 0 ⇔ 2x = 7 ⇔ x = 72

Vậy tập nghiệm của phương trình là S = {2;72}

e) (2x – 5)2 – (x + 2)2 = 0 ⇔ (2x - 5 - x - 2)(2x - 5 + x + 2) = 0

⇔ (x - 7)(3x - 3) = 0 ⇔ x - 7 = 0 hoặc 3x - 3 = 0

1) x - 7 = 0 ⇔ x = 7

2) 3x - 3 = 0 ⇔ 3x = 3 ⇔ x = 1

Vậy tập nghiệm phương trình là: S= { 7; 1}

f) x2 – x – (3x - 3) = 0 ⇔ x2 – x – 3x + 3 = 0 

⇔ x(x - 1) - 3(x - 1) = 0 ⇔ (x - 3)(x - 1) = 0 

⇔ x = 3 hoặc x = 1

Vậy tập nghiệm của phương trình là S = {1;3}