K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

1. Giải phương trình: |2x-3|+|x-2|=7

|2x-3|+|x-2|=7

\(\Rightarrow\left[{}\begin{matrix}2x-3+x-2=7\\-2x+3-x+2=7\\-2x+3+x-2=7\\2x-3-x+2=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=7\\-3x+5=7\\-x+1=7\\x-1=7\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\frac{2}{3}\\x=-8\\x=8\end{matrix}\right.\)

30 tháng 7 2019

\(\left|2x-\frac{1}{2}\right|+1=3x\)

\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=3x-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x-\frac{1}{2}=3x-1\\2x-\frac{1}{2}=1-3x\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}2x-3x=-1+\frac{1}{2}\\2x+3x=1+\frac{1}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}-x=-\frac{1}{2}\\5x=\frac{3}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{10}\end{cases}}\)

1 tháng 7 2019

a)  \(|2x-2|+|3-3x|=125\left(1\right)\)

Ta có: 

\(2x-2=0\Leftrightarrow x=1\)

\(3-3x=0\Leftrightarrow x=1\)

Lập bảng xét dấu :

  2x-2 3-3x 1 0 0 - - + +

Với \(x< 1\Rightarrow\hept{\begin{cases}2x-2< 0\\3-3x>0\end{cases}\Rightarrow\hept{\begin{cases}|2x-2|=2-2x\\|3-3x|=3-3x\end{cases}}\left(2\right)}\)

Thay (2) vào (1) ta được :

\(\left(2-2x\right)+\left(3-3x\right)=125\)

\(2-2x+3-3x=125\)

\(-5x+5=125\)

\(-5x=120\)

\(x=-24\)( chọn )

Với \(x\ge1\Rightarrow\hept{\begin{cases}2x-2>0\\3-3x< 0\end{cases}}\Rightarrow\hept{\begin{cases}|2x-2|=2x-2\\|3-3x|=3x-3\end{cases}\left(3\right)}\)

Thay (3) vào (1) ta được :

\(\left(2x-2\right)+\left(3x-3\right)=125\)

\(2x-2+3x-3=125\)

\(5x-5=125\)

\(5x=130\)

\(x=26\)9 (CHọn )

Vậy \(x\in\left\{-24;26\right\}\)

1 tháng 7 2019

b) \(|x-2018|+|x-2019|=1\left(1\right)\)

Ta có: \(x-2018=0\Leftrightarrow x=2018\)

          \(x-2019=0\Leftrightarrow x=2019\)

Lập bảng xét dấu :

x-2018 x-2019 2018 0 2019 0 - - - + + +

+) Với \(x< 2018\Rightarrow\hept{\begin{cases}x-2018< 0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=2018-x\\|x-2019|=2019-x\end{cases}\left(2\right)}}\)

Thay (2) vào (1) ta được :

\(\left(2018-x\right)+\left(2019-x\right)=1\)

\(2018-x+2019-x=1\)

\(4037-2x=1\)

\(2x=4036\)

\(x=2018\)( Loại  )

+) Với \(2018\le x< 2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019< 0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=2019-x\end{cases}\left(3\right)}}\)

Thay (3) vào (1) ta được :

\(\left(x-2018\right)+\left(2019-x\right)=1\)

\(x-2018+2019-x=1\)

\(1=1\)( luôn đúng )

+) Với \(x\ge2019\Rightarrow\hept{\begin{cases}x-2018>0\\x-2019>0\end{cases}\Rightarrow\hept{\begin{cases}|x-2018|=x-2018\\|x-2019|=x-2019\end{cases}\left(4\right)}}\)

Thay (4) vào (1) ta được :

\(\left(x-2018\right)+\left(x-2019\right)=1\)

\(2x-4037=1\)

\(x=2019\)( Chọn )

Vậy \(2018\le x\le2019\)

1. Rút gọn biểu thức :

\(M=4.\left(2-3x\right)-\left|2x-3\right|\) (*)

- Xét 2 TH :

+ Trường hợp 1 : \(\left|2x-3\right|=\left(2x-3\right)\) thì (*) trở thành :

\(M=4.\left(2-3x\right)-\left(2x-3\right)\)

\(\Rightarrow M=8-12x-2x+3\)

\(\Rightarrow M=-14x+11\)

+ Trường hợp 2 : \(\left|2x-3\right|=\left(3-2x\right)\) thì (*) trở thành :

\(M=4.\left(2-3x\right)-\left(3-2x\right)\)

\(\Rightarrow M=8-12x-3+2x\)

\(\Rightarrow M=-10x+5\)

30 tháng 7 2019

Cái bài giải phương trình ở lớp 8 mới học nhé bạn.

30 tháng 12 2017

khó hiểu vcl

31 tháng 12 2017

đúng lun ko hiểu một chút nào
 

\(a)2xy+4y-x=5\)

\(\Leftrightarrow\left(2xy+4y\right)-x=3+2\)

\(\Leftrightarrow2y\left(x+2\right)-x-2=3\)

\(\Leftrightarrow2y\left(x+2\right)-\left(x+2\right)=3\)

\(\Leftrightarrow\left(x+2\right)\left(2y-1\right)=3\)

\(\Rightarrow\left(x+2\right);\left(2y-1\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

Xét từng trường hợp :

  • \(\hept{\begin{cases}x+2=1\\2y-1=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\end{cases}}\)
  • \(\hept{\begin{cases}x+2=3\\2y-1=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=1\end{cases}}}\)
  • \(\hept{\begin{cases}x+2=-1\\2y-1=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-3\\y=-1\end{cases}}}\)
  • \(\hept{\begin{cases}x+2=-3\\2y-1=-1\end{cases}\Leftrightarrow\hept{\begin{cases}x=-5\\y=0\end{cases}}}\)

Vậy

\(2x+y=xy-3\)

\(\Leftrightarrow xy-2x-y=3\)

\(\Leftrightarrow\left(xy-2x\right)-y=-2+5\)

\(\Leftrightarrow x\left(y-2\right)-y+2=5\)

\(\Leftrightarrow x\left(y-2\right)-\left(y-2\right)=5\)

\(\Leftrightarrow\left(y-2\right)\left(x-1\right)=5\)

\(\Rightarrow\left(y-2\right);\left(x-1\right)\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Xét các trường hợp như câu trên và kết luận

15 tháng 10 2018

\(\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0.\)

\(\text{Ta có}\hept{\begin{cases}\left|2x^2-27\right|^{2019}\ge0\\\left(5y+12\right)^{2018}\ge0\end{cases}}\text{Mà}\left|2x^2-27\right|^{2019}+\left(5y+12\right)^{2018}=0\)

\(\Rightarrow\hept{\begin{cases}\left|2x^2-27\right|^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}\left(2x-27\right)^{2019}=0\\\left(5y+12\right)^{2018}=0\end{cases}\Rightarrow\orbr{\begin{cases}2x-27=0\\5y+12=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=27\\5y=-12\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}}}}}\) 

\(\text{Vậy}\hept{\begin{cases}x=\frac{27}{2}\\y=\frac{-12}{5}\end{cases}}\) 

18 tháng 3 2018

a) M=2018+|1-2x|

nhận thấy:|1-2x|>=0 với mọi x=> M =2018+|1-2x|>=2018

                    dấu"=" xảy ra <=>|1-2x|=0<=>1-2x=0=>2x=1=>x=1/2

vậy giá trị nhỏ nhất của M=2018<=>x=1/2

b)N=2018-(1-2x)^2018

nhận thấy;(1-2x)^2018>=0 với mọi x=>-(1-2x)<=0 với mọi x=>N=2018-(1-2x)^2018<=2018

dấu bằng xảy ra <=>(1-2x)^2018=0=>1-2x=0=>2x=1=>x=1/2

vậy giá trị lớn nhất của N=2018<=>x=1/2

c)P=7+|x-1|+|2-x|

áp dụng |A|+|B|>=|A+B|. dấu "=" xảy ra<=>A.B=0 ta có

P=7+|x-1|+|2-x|>=7+|x-1+2-x|=7+1+8

dấu "=" xảy ra <=>(x-1). (2-x)=0

<=>x-1=0 hoặc 2-x=0<=>x=1 hoặc x=2

vậy giá trị nhỏ nhất của P=8<=> x=1 hoặc x=2

24 tháng 1 2019

bổ sung đề là tìm x,y nguyên dương

b/\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}\).Vai trò của x,y là bình đẳng nên có thể giả sử: \(x\ge y\)

Hiển nhiên ta có: \(\frac{1}{y}< \frac{1}{3}\Leftrightarrow y\ge4\) (vì x,y nguyên dương)

\(\frac{1}{x}+\frac{1}{y}=\frac{1}{3}=\frac{2}{6}\le\frac{2}{y}\Rightarrow y\le6\)

Ta có: \(4\le y\le6\)

Đến đây bí,alibaba!