Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng thời gian đi là t(h)
Tổng quãng đường đi là S(km)
Quãng đường vật đi được trong \(\dfrac{1}{3}\)thời gian đầu là
S1=\(\dfrac{1}{3}t.30\)=10t
1/3 quãng đường còn lại là S2=\(\dfrac{1}{3}\)(S-10t)
Thời gian vật đi hết 1/3 quãng đường còn lại là
t2=\(\dfrac{S-10t}{135}\)
Quãng đường còn lại là S3=S-10t-\(\dfrac{1}{3}(S-10t)\)=\(\dfrac{2}{3}(S-10t)\)
Thời gian đi quãng đường cuối là
t3=\(\dfrac{S-10t}{90}\)
Vận tốc trung bình trên cả quãng đường là
vtb=\(\dfrac{S}{t1+t2+t3}\)
t1+t2+t3=t
t/3+\(\dfrac{S-10t}{135}+\dfrac{S-10t}{90}=t\)
giải ra được S=46t
=>vtb=46(km/h)
Q R q
Để chứng minh công thức trên thì ta tính theo định nghĩa: \(V=\dfrac{W_t}{q}\) (điện thế tại 1 điểm bằng thế năng tĩnh điện gây ra tại điện tích đặt ở điểm đó chia cho độ lớn điện tích).
Xét quả cầu có điện tích q đặt cách quả cầu Q một khoảng R.
Thế năng tĩnh điện do Q gây ra tại q là: \(W_t=\dfrac{kQq}{\varepsilon R}\)
Điện thế do Q gây ra tại vị trí q là: \(V=\dfrac{W_t}{q}=\dfrac{kQ}{\varepsilon R}\)